检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
之前听说深度学习的只是很少的人,作为通信专业的学生,系里也只有几个几个老师研究深度学习,但近两年,越来越多的老师偏向这个方向,像研究电力计算机视觉,图像处理的老师都有涉及到深度学校方向,去年学校还联合多个专业开设了人工智能专业,横跨自动化、电子、电力和计算机四个专业。深度学习在那个专业应用前景更广泛呢
跨模态检索的主要挑战。随着深度学习技术的推广以及其在计算机视觉、自然语言处理等领域的显著成果,研究者提出了一系列以深度学习为基础的跨模态检索方法,极大地缓解了不同模态间相似性度量的挑战,本文称之为深度跨模态检索。本文将从以下角度综述近些年来代表性的深度跨模态检索论文,基于所提供的
然而在LeNet提出后的十几年里,由于神经网络的可解释性较差和计算资源的限制等原因,神经网络一直处于发展的低谷阶段。 转折点 2012年 也是现代意义的深度学习的元年 Alex Krizhevsky提出的神经网络结构,所以叫AlexNet 爆点在于在当年的ILSVRC挑战赛中获得冠军(错误率16
深度学习中分类与回归常用的几种损失函数,包括均方差损失 Mean Squared Loss、平均绝对误差损失 Mean Absolute Error Loss、Huber Loss、分位数损失 Quantile Loss、交叉熵损失函数 Cross Entropy Loss、Hinge
序列预测「NGS测序深度」的深度学习模型一种可以根据 DNA 序列预测「NGS测序深度」的深度学习模型 莱斯大学的研究人员设计了一个深度学习模型,该模型可以根据DNA序列,预测Next-Generation Sequencing(NGS)的测序深度。 针对预测测序深度的有针对性的NG
深度学习源于神经网络的研究,可理解为深层的神经网络。通过它可以获得深层次的特征表示,免除人工选取特征的繁复冗杂和高维数据的维度灾难问题。目前较为公认的深度学习的基本模型包括: 基于受限玻尔兹曼机(Restricted Boltzmann Machine,RBM)的深度信念网络(Deep
**和**CPU**的具体配置以及其他诸多因素。 目前为止,我觉得,对于很多应用系统,即使是经验丰富的深度学习行家也不太可能一开始就预设出最匹配的超级参数,所以说,应用深度学习是一个典型的迭代过程,需要多次循环往复,才能为应用程序找到一个称心的神经网络,因此循环该过程的效率是决定
目录 先来看机器学习: 什么是特征? 深度学习是表示学习的经典代表: 深度学习的过程: 深度学习与传统机器学习差别: 深度学习代表算法: 先来看机器学习: 机器学习是利用经验experience来改善 计算机系统自身的性能,通过经验获取知识knowledge。 以往都是人们向
有监督机器学习的核心哲学: 使用“数据驱动”方法让计算机可以学习输入/输出之间的正确映射。它需要一系列“标记”记录,其中包含训练集中的输入和期望的输出,以便将输入到输出的映射学习为一种准确的行为表现。 可以用下面这个图来表示: 无监督机器学习的核心哲学: 让计算机学习输入的内部
2.4 MNIST数据集MNIST是一个包含60 000个0~9这十个数字的28×28像素灰度图像的数据集。MNIST也包括10 000个测试集图像。数据集包含以下四个文件:train-images-idx3-ubyte.gz:训练集图像(9 912 422字节),见http://yann
深度神经网络给人以一种神秘的力量,它为什么能有效地完成那么多出色的任务?如何解释网络中的特征含义是解密深度神经网络的一个有效方法。下面这篇论文《Shapley Explanation Networks》基于Shapley Values来进行网络特性的解释,其阐述如下:Shaple
张量的常用操作在机器学习和深度学习中,我们往往将待处理的数据规范化为特定维度的张量。列如,在不进行批处理时,彩**像可以看成一个三维张量——图像的三个颜色通道(红,绿,蓝),图像的高和图像的宽,视频可以看成一个四维张量——视频的时间帧方向,每一帧图像的颜色通道,高和宽,三维场景可
更明显了,第四隐藏层比第一隐藏层的更新速度慢了两个数量级图片来自网络总结:从深层网络角度来讲,不同的层学习的速度差异很大,表现为网络中靠近输出的层学习的情况很好,靠近输入的层学习的很慢,有时甚至训练了很久,前几层的权值和刚开始随机初始化的值差不多。因此,梯度消失、爆炸,其根本原因
引言 「深度学习」(DL)一词最初在 1986 被引入机器学习(ML),后来在 2000 年时被用于人工神经网络(ANN)。深度学习方法由多个层组成,以学习具有多个抽象层次的数据特征。DL 方法允许计算机通过相对简单的概念来学习复杂的概念。对于人工神经网络(ANN),深度学习(DL
训练阶段收集的经验来学习最佳策略;但它也可能错过许多其他获得更好政策的最佳轨迹。强化学习还需要评估状态-动作对的轨迹;这比监督学习所要面对的,每个训练示例与其预期结果配对问题更难学习。这种复杂性增加了深度强化学习模型的数据要求。但与监督学习不同,深度强化学习模型在训练期间收集数据
和泛化能力,而小模型因为网络规模较小,表达能力有限。因此,可以利用大模型学习到的知识去指导小模型训练,使得小模型具有与大模型相当的性能,但是参数数量大幅降低,从而实现模型压缩与加速,这就是知识蒸馏与迁移学习在模型优化中的应用。Hinton等人最早在文章《Distilling the
而且其所有局部极小点必然是全局最小点,所以表现很好。然而,深度学习中的大多数问题都难以表示成凸优化的形式。凸优化仅用作的一些深度学习算法的子程序。凸优化中的分析思路对证明深度学习算法的收敛性非常有用,然而一般来说,深度学习背景下的凸优化的重要性大大减少。
对于初次踏入深度学习领域的人员而言,选择哪种计算框架是一个值得思考的问题。 如果一定要选出一个框架作为你的深度学习入门工具,那么建议选择Keras,Keras具备搭建神经网络各个零部件高度集成的API,并且对新手非常友好,基于Keras进行一次快速的深度学习试验几乎是分分钟的事。
Pod是最小的部署单元,也是后面经常配置的地方,本章节带你熟悉Pod中常见资源配置及参数。 也就是YAML这部分: ... template: metadata: labels: app: web spec: containers: - image: lizh