检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
数据,深度学习可以从中学习到更加准确和鲁棒的模型。 适应复杂任务:深度学习模型可以适应各种复杂任务,包括计算机视觉、自然语言处理和语音识别等。 集成学习在深度学习中的应用 集成学习可以与深度学习相结合,以提高深度学习算法的性能和鲁棒性。以下是一些常见的集成学习方法在深度学习中的应用:
对抗样本也提供了一种实现半监督学习的方法。在与数据集中的标签不相关联的点 x 处,模型本身为其分配一些标签 yˆ。模型的标记 yˆ 未必是真正的标签,但如果模型是高品质的,那么 yˆ 提供正确标签的可能性很大。我们可以搜索一个对抗样本 x′,导致分类器输出一个标签 y′ 且 y′
最常用的方法是输出模型在一些样本上概率对数的平均值。通常,我们会更加关注机器学习算法在未观测数据上的性能如何,因为这将决定其在现实生活中的性能如何。因此,我们使用测试数据来评估系统性能,同训练机器学习系统的数据分开。性能度量的选择或许看上去简单且客观,但是选择一个与系统理想表现
是输出模型在一些样本上概率对数的平均值。 通常,我们会更加关注机器学习算法在未观测数据上的性能如何,因为这将决定其在现实生活中的性能如何。因此,我们使用测试数据来评估系统性能,同训练机器学习系统的数据分开。性能度量的选择或许看上去简单且客观,但是选择一个与系统理想表现对应的性能度量通常是很难的。
数据的维数很高时,很多机器学习问题变得相当困难。这种现象被称为维数灾难 (curse of dimensionality)。特别值得注意的是,一组变量不同的可能配置数量会随着变量数目的增加而指数级增长。由维数灾难带来的一个挑战是统计挑战。如图5.9所示,统计挑战产生于 x 的可能
Attention机制Attention mechanism 在序列学习任务上具有巨大的提升作用,在编码器框架内,通过编码端加入Attention模型,对源数据序列进行数据加权变换,或者在解码端引入Attention模型,对目标数据进行加权变化,可以有效提高序列对序列的自然方式下
如果把偏差——方差看成一个色谱,那么与之相反的一端的是深度神经网络。神经网络并不局限与单独查看每个特征,而是学习特征之间的交互。例如:神经网络可能推断“尼日利亚”和“西联汇款”一起出现在电子邮件中表示垃圾邮件,但单独出现则不表示垃圾邮件。 即使我们有比特征多得多的样本,深度神经网络也有可能过拟合。 6
点和输入区域之间形成一一对应的关系。每个叶结点将其输入区域的每个点映射到相同的输出。决策树通常有特定的训练算法,超出了本书的范围。如果允许学习任意大小的决策树,那么可以被视作非参数算法。然而实践中通常有大小限制作为正则化项将其转变成有参模型。由于决策树通常使用坐标轴相关的拆分,并
(Neal, 1996)比Dropout表现得更好 (Srivastava et al., 2014)。当有其他未分类的数据可用时,无监督特征学习也比Dropout更有优势。
(Tang and Eliasmith, 2010)。改善神经网络健壮性的方法之一是简单地将随机噪声添加到输入再进行训练。输入噪声注入是一些无监督学习算法的一部分,如去噪自编码器(Vincent et al., 2008a)。向隐藏单元施加噪声也是可行的,这可以被看作在多个抽象层上进行的数据集增强。Poole
我们经常会需要在已知 P (y | x) 时计算 P (x | y)。幸运的是,如果还知道 P (x),我们可以用贝叶斯规则 (Bayes’ rule) 来实现这一目的: 注意到 P (y) 出现在上面的公式中,它通常使用 P (y) = ∑x P (y
条件数表明函数相对于输入的微小变化而变化的快慢程度。输入被轻微扰动而迅速改变的函数对于科学计算来说是可能是有问题的,因为输入中的舍入误差可能导致输出的巨大变化。考虑函数 f(x) = A−1x。当 A ∈ Rn×n 具有特征值分解时,其条件数为:这是最大和最小特征值的模之比。当该
正切传播也涉及到双反向传播(Drucker and LeCun, 1992) 和对抗训练(Szegedy et al., 2014a; Goodfellow et al., 2014b)。双反向传播正则化使Jacobian矩阵偏小,而对抗训练找到原输入附近的点,训练模型在这些点上
Attention机制最重要的步骤是如何在每一时刻产生不同的语言编码向量 ,表示接下来输出的时候要重点关注输入序列中的哪些部分,然后根据关注的区域来产生下一个输出。
有时,我们真正关心的损失函数(比如分类误差)并不能被高效地优化。例如,即使对于线性分类器而言,精确地最小化 0 − 1 损失通常是不可解的(复杂度是输入维数的指数级别)(Marcotte and Savard, 1992)。在这种情况下,我们通常会优化代理损失函数(surrogate
另一个策略是保持从第一轮训练获得的参数,然后使用全部的数据继续训练。在这个阶段,已经没有验证集指导我们需要在训练多少步后终止。相反,我们可以监控验证集的平均损失函数,并继续训练,直到它低于提前终止过程终止时的目标值。此策略避免了重新训练模型的高成本,但表现并没有那么好。例如,验证
问题如图所示
常见的语义分割算法属于有监督学习,因此标注好的数据集必不可少。公开的语义分割数据集有很多,目前学术界主要有三个benchmark(数据集)用于模型训练和测试。第一个常用的数据集是Pascal VOC系列。这个系列中目前较流行的是VOC2012,Pascal Context等类似的
而深度学习是机器学习的一种特殊形式,它通过构建多层神经网络来进行学习和预测。深度学习的优点在于能够自动学习特征表示,不需要手动进行特征工程。它能够从原始数据中学习到更加抽象和高级的特征,从而取得更好的预测效果。 相比机器学习,深度学习的优点包括: 1. 自动特征学习:深度学习能够自动学习从原始数据中提取特征,减少了对特征工程的依赖。
实的后盾!谨以此书献给众多热爱深度学习算法及MXNet的朋友们! 魏凯峰 CONTENTS目 录前言第1章 全面认识MXNet11.1 人工智能、机器学习与深度学习21.1.1 人工智能21.1.2 机器学习21.1.3 深度学习41.2 深度学习框架41.2.1 MXNet61