检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
Ranger权限,可参考添加HetuEngine的Ranger访问权限策略。 创建HetuEngine计算实例。 创建计算实例并确保运行正常,可参考创建HetuEngine计算实例。 步骤二:获取JDBC jar包 登录FusionInsight Manager。 选择“集群 >
据传输,使得Join计算的性能大大降低,该过程如图1所示: 图1 无同分布数据传输流程 由于数据表文件是以HDFS Block方式存放在物理文件系统中,如果能把两个需要Join的文件数据块按Join Key分区后,一一对应地放在同一台机器上,则在Join计算的Reduce过程中无需传递数据,直接在节点本地做Map
RS集群 本章节仅适用于MRS 3.2.0及之后版本。 操作场景 场景一:随着MRS ClickHouse业务数量的增长,原有集群的存储和计算资源已不满足业务需求,需要对集群进行拆分,将部分用户业务及数据库数据迁移到新建集群中。 场景二:MRS ClickHouse集群后端主机所
以在界面上根据业务需要,在集群中创建租户、管理租户。 创建租户时将自动创建租户对应的角色、计算资源和存储资源。默认情况下,新的计算资源和存储资源的全部权限将分配给租户的角色。 修改租户的计算资源或存储资源,对应的角色关联权限将自动更新。 Manager还提供了多实例的功能,使用户
要注意以下约束限制: MRS集群和LakeFormation实例必须同在一个云账户下且属于同一个Region。 LakeFormation侧创建的接入客户端所在虚拟私有云,必须与MRS集群在同一虚拟私有云下。 MRS集群仅支持对接LakeFormation实例中名称为hive的Catalog。
Spark:基于内存进行计算的分布式计算框架,MRS支持提交SparkSubmit、Spark Script和Spark SQL作业。 SparkSubmit:提交Spark Jar和Spark Python程序,运行Spark Application计算和处理用户数据。 Spa
ark Streaming都没有触发数据计算的任务(Spark Streaming默认有两个尝试运行的Job,就是图中两个) 图2 Completed Jobs 回答 经过定位发现,导致这个问题的原因是:Spark Streaming的计算核数少于Receiver的个数,导致部分
Storm应用开发常用概念 Topology 拓扑是一个计算流图。其中每个节点包含处理逻辑,而节点间的连线则表明了节点间的数据是如何流动的。 Spout 在一个Topology中产生源数据流的组件。通常情况下Spout会从外部数据源中读取数据,然后转换为Topology内部的源数据。
ark Streaming都没有触发数据计算的任务(Spark Streaming默认有两个尝试运行的Job,就是图中两个) 图2 Completed Jobs 回答 经过定位发现,导致这个问题的原因是:Spark Streaming的计算核数少于Receiver的个数,导致部分
IoTDB从存储上对时间序列进行排序,索引和chunk块存储,大大的提升时序数据的查询性能。通过Raft协议,来确保数据的一致性。针对时序场景,对存储数据进行预计算和存储,提升分析场景的性能。针对时序数据特征,进行强有力的数据编码和压缩能力,同时其自身的副本机制也保证了数据的安全,并与Apache H
Storm应用开发常用概念 Topology 拓扑是一个计算流图。其中每个节点包含处理逻辑,而节点间的连线则表明了节点间的数据是如何流动的。 Spout 在一个Topology中产生源数据流的组件。通常情况下Spout会从外部数据源中读取数据,然后转换为Topology内部的源数据。
选择“叶子租户”:当前租户为叶子租户,不支持添加子租户。 选择“非叶子租户”:当前租户为非叶子租户,支持添加子租户,但租户层级不能超过5层。 计算资源 为当前租户选择动态计算资源。 选择“Yarn”时,系统自动在Yarn中以子租户名称创建任务队列。 如果是叶子租户,叶子租户可直接提交到任务队列中。
Storm应用开发常用概念 Topology 拓扑是一个计算流图。其中每个节点包含处理逻辑,而节点间的连线则表明了节点间的数据是如何流动的。 Spout 在一个Topology中产生源数据流的组件。通常情况下Spout会从外部数据源中读取数据,然后转换为Topology内部的源数据。
的任务。Storm的目标是提供对大数据流的实时处理,可以可靠地处理无限的数据流。 Storm有很多适用的场景:实时分析、在线机器学习、持续计算和分布式ETL等,易扩展、支持容错,可确保数据得到处理,易于构建和操控。 Storm有如下几个特点: 适用场景广泛 易扩展,可伸缩性高 保证无数据丢失
扩容MRS集群 MRS的扩容不论在存储还是计算能力上,都可以简单地通过增加Core节点或者Task节点来完成,不需要修改系统架构,降低运维成本。集群Core节点不仅可以处理数据,也可以存储数据。可以在集群中添加Core节点,通过增加节点数量处理峰值负载。集群Task节点主要用于处理数据,不存放持久数据。
GB数据需要写入到集群中,需要将30 GB数据均匀切分后分别放到shard-1、shard-2和shard-3的3个分片节点中,以充分发挥MPP查询时并行计算能力,避免数据在shard间倾斜计算出现木桶效应,导致SQL查询性能较差。 可通过弹性负载均衡(Elastic Load Balance,简称ELB)访问ClickHouse,来实现数据均匀。
如果发生此异常,请为租户配置足够的磁盘空间配额。 例如: 需要的磁盘空间配置可以按照如下方法计算: 如果HDFS的副本数为3, HDFS默认的块大小为128MB,则最小需要384MB的磁盘空间用于写表的schema文件到HDFS上。计算公式:no. of block x block_size x replication_factor
的任务。Storm的目标是提供对大数据流的实时处理,可以可靠地处理无限的数据流。 Storm有很多适用的场景:实时分析、在线机器学习、持续计算和分布式ETL等,易扩展、支持容错,可确保数据得到处理,易于构建和操控。 Storm有如下几个特点: 适用场景广泛 易扩展,可伸缩性高 保证无数据丢失
分桶后,部分桶中的数据远高于其它分桶。最终导致部分Task过重,跑得很慢;其它Task过轻,跑得很快。一方面,数据量大Task运行慢,使得计算性能低;另一方面,数据量少的Task在运行完成后,导致很多CPU空闲,造成CPU资源浪费。 通过如下配置项可开启自动进行数据倾斜处理功能,
情况,比如集群中添加新数据节点的场景。如果HDFS出现数据不平衡的状况,可能导致多种问题,比如MapReduce应用程序无法很好地利用本地计算的优势、数据节点之间无法达到更好的网络带宽使用率或节点磁盘无法利用等等。所以MRS集群管理员需要定期检查并保持DataNode数据平衡。