检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
发的第一步。首先,需要根据业务需求收集相关的原始数据,确保数据的覆盖面和多样性。例如,若是自然语言处理任务,可能需要大量的文本数据;如果是计算机视觉任务,则需要图像或视频数据。 数据预处理:数据预处理是数据准备过程中的重要环节,旨在提高数据质量和适应模型的需求。常见的数据预处理操作包括:
针对Token转换比,平台提供了Token计算器功能,可以根据您输入的文本计算Token数量,您可以通过以下方式使用该功能: 在左侧导航栏选择“能力调测”,单击右下角“Token计算器”使用该功能。 使用API调用Token计算器,详见《API参考》“API > Token计算器”。 NLP大模型训练类型选择建议
选择“全量微调”。 全量微调:在模型进行有监督微调时,对大模型的所有参数进行更新。这种方法通常能够实现最佳的模型性能,但需要消耗大量计算资源和时间,计算开销较大。 基础模型 选择全量微调所用的基础模型, 可从“已发布模型”或“未发布模型”中进行选择。 高级设置 checkpoint
能够保障模型在不同环境中的高效应用。 支持区域: 西南-贵阳一 开发盘古NLP大模型 开发盘古CV大模型 开发盘古预测大模型 开发盘古科学计算大模型 开发盘古专业大模型 应用开发工具链 应用开发工具链是盘古大模型平台的关键模块,支持提示词工程和智能Agent应用创建。 该工具链提
评测指标(自动评测-使用评测模板) 指标说明 评测得分 每个数据集上的得分为模型在当前数据集上的通过率;评测能力项中若有多个数据集则按照数据量的大小计算通过率的加权平均数。 综合能力 综合能力是计算所有数据集通过率的加权平均数。 表3 NLP大模型人工评测指标说明 评测指标(人工评测) 指标说明 准确性 模型生成答案正确且无事实性错误。
用于判断文档重复度,根据特征N值计算文档内词语按N值组合后的重复此时,可通过以下两种算法比较结果是否大于特征阈值,大于特征阈值的文档删除。 top-gram过滤:计算重复最多的garm占总长度的比例,大于特征阈值则删除。 gram重复率过滤:计算所有重复的garm占总长度的比例,大于特征阈值则删除。
平台提供的“Python解释器插件”能够根据用户输入的问题自动生成Python代码,并执行该代码获取结果。此插件为Agent提供了强大的计算、数据处理和分析功能,用户只需将其添加到应用中,即可扩展功能。 自定义插件:为了满足更个性化的需求,平台允许开发者创建自定义插件,支持将A
、人员离岗检测、动植物检测、工业缺陷检测等。 2024年12月发布的版本,支持全量微调、在线推理。 物体检测-N模型为中参数量模型,在保证计算效率的同时,具备较强的特征识别能力,提供高效的性能表现。 父主题: 训练CV大模型
性。 模型压缩:在模型部署前,进行模型压缩是提升推理性能的关键步骤。通过压缩模型,能够有效减少推理过程中的显存占用,节省推理资源,同时提高计算速度。当前,平台支持对NLP大模型进行压缩。 模型部署:平台提供了一键式模型部署功能,用户可以轻松将训练好的模型部署到云端或本地环境中。平
权限管理 如果您需要对华为云上购买的盘古大模型资源,为企业中的员工设置不同的访问权限,以达到不同员工之间的权限隔离,您可以使用统一身份认证服务(IAM)和盘古角色管理功能进行精细的权限管理。 如果华为云账号已经能满足您的要求,不需要创建独立的IAM用户(子用户)进行权限管理,您可
视频涉政评分 对视频的涉政程度进行评分,分数越高越危险。评分范围(0, 100),评分≥90分的视频可视为涉政视频。 运动幅度评分 通过计算每个像素在每一帧中的移动范围进行评分,识别运动幅度过快(如>100光流)或过慢(如≤2光流)的视频,数值越大表示运动过快。 质量基础评分
训练日志可以按照不同的节点(训练阶段)进行筛选查看。分布式训练时,任务被分配到多个工作节点上进行并行处理,每个工作节点负责处理一部分数据或执行特定的计算任务。日志也可以按照不同的工作节点(如worker-0表示第一个工作节点)进行筛选查看。 图2 获取训练日志 父主题: 训练NLP大模型
Key)加密调用请求。经过认证的请求总是需要包含一个签名值,该签名值以请求者的访问密钥(AK/SK)作为加密因子,结合请求体携带的特定信息计算而成。通过访问密钥(AK/SK)认证方式进行认证鉴权,即使用Access Key ID(AK)/Secret Access Key(SK)加密的方法来验证某个请求发送者身份。
训练日志可以按照不同的节点(训练阶段)进行筛选查看。分布式训练时,任务被分配到多个工作节点上进行并行处理,每个工作节点负责处理一部分数据或执行特定的计算任务。日志也可以按照不同的工作节点(如worker-0表示第一个工作节点)进行筛选查看。 图1 获取训练日志 父主题: 训练预测大模型
学习率衰减比率(learning_rate_decay_ratio) 0~1 0.01~0.1 学习率衰减比率用于设置训练过程中的学习率衰减的最小值。计算公式为:最小学习率=学习率*学习率衰减比率。 参数的选择没有标准答案,您需要根据任务的实际情况进行调整,以上建议值仅供参考。 父主题: 大模型微调训练类问题
INT8:该压缩策略将模型参数压缩至8位字节,可以有效降低推理显存占用。 INT4:该压缩策略与INT8相比,可以进一步减少模型的存储空间和计算复杂度。 配置资源。选择计费模式并设置训练单元。 可选择开启订阅提醒。开启后,系统将在本次压缩任务状态变更时,向用户发送短信/邮件提醒。
训练日志可以按照不同的节点(训练阶段)进行筛选查看。分布式训练时,任务被分配到多个工作节点上进行并行处理,每个工作节点负责处理一部分数据或执行特定的计算任务。日志也可以按照不同的工作节点(如worker-0表示第一个工作节点)进行筛选查看。 图2 获取训练日志 父主题: 训练CV大模型
概念,通过合理设置,可以帮助模型检测出多种尺寸的目标。 框重叠比例阈值 用于判定模型预测的边界框与真实边界框之间是否为同一物体。该阈值用于计算IoU(交并比),影响模型的精确度。 热身轮次 表示在模型训练初期,逐步增加学习率到预设值的训练轮次,用于帮助模型在训练初期稳定收敛,避免大幅度的参数更新导致不稳定的学习过程。
通过上述指令,将一个推理任务拆解分步骤进行,可以降低推理任务的难度并可以增强答案可解释性。另外,相比直接输出答案,分步解决也容许大模型有更多的“思考时间”,用更多的计算资源解决该问题。 自洽性 同一问题使用大模型回答多次,生成多个推理路径及答案,选择一致性最高的结果作为最终答案。 父主题: 提示词写作进阶技巧
出来处理更复杂、更个性化的客户需求;个性化服务:基于大模型的智能客服能够学习和适应用户的行为模式和偏好,提供更加个性化的服务。 农业 科学计算大模型包括全球中期天气要素模型和降水模型,可以对未来一段时间的天气和降水进行预测,全球中期天气要素模型和降水模型能够在全球范围内进行预测,