检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
Torch训练脚本中插入Ascend PyTorch Profiler接口,执行训练的同时采集性能数据,完成训练后直接输出可视化的性能数据文件,提升了性能分析效率。 Ascend PyTorch Profiler接口可全面采集PyTorch训练场景下的性能数据,主要包括PyTor
如何将本地标注的数据导入ModelArts? ModelArts支持通过导入数据集的操作,导入更多数据。本地标注的数据,当前支持从OBS目录导入或从Manifest文件导入两种方式。导入之后您还可以在ModelArts数据管理模块中对数据进行重新标注或修改标注情况。 从OBS目录导入或从Manifest详细操作指导和规范说明请参见导入数据。
txt”。用户无法直接使用open方法打开OBS文件,上面描述的打开本地文件的代码将会报错。 OBS提供了很多方式和工具给用户使用,如SDK、API、console、OBS Browser等,ModelArts mox.file提供了一套更为方便地访问OBS的API,允许用户通过一系列模仿操作本地文件系统的API来
使用puttygen将密钥对.pem文件转成.ppk文件 下载puttygen,并双击运行puttygen。 单击“Load”,上传.pem密钥(即在创建Notebook实例时创建并保存的密钥对文件)。 单击“Save private key”,保存生成的.ppk文件。.ppk文件的名字可以自定义,例如key
模型文件目录下不能出现dockerfile文件,需要去掉模型文件目录下存在dockerfile文件。 图2 构建日志:dockerfile文件目录有问题 pip软件包版本不匹配,需要修改为日志中打印的存在的版本。 图3 pip版本不匹配 构建日志中出现报错:“exec /usr/bin/sh:
创建模型 创建模型不同方式的场景介绍 从训练作业中导入模型文件创建模型 从OBS中导入模型文件创建模型 从容器镜像中导入模型文件创建模型 从AI Gallery订阅模型 父主题: 使用ModelArts Standard部署模型并推理预测
当AI应用的状态变为“待启动”时,表示创建完成。 启动AI应用 上传AI应用的运行文件“app.py”。在AI应用详情页,选择“应用文件”页签,单击“添加文件”,进入上传文件页面。 运行文件的开发要求请参见准备AI应用运行文件app.py。 上传单个超过5GB的文件时,请使用Gallery CLI工具。CLI工具的获取和使用请参见Gallery
OBS并行文件系统中。 Summary数据上传到Notebook路径/home/ma-user/work/下的方式,请参见上传本地文件至JupyterLab。 Summary数据如果是通过OBS并行文件系统挂载到Notebook中,请将模型训练时产生的Summary文件先上传到O
容器引擎选择Containerd。 图1 购买Lite专属池 k8s Cluster资源配置 若已完成集群资源购买和开通,则需要对网络、存储、容器镜像等内容进行配置。请参考k8s Cluster环境配置详细流程。 kubectl访问集群配置 本步骤需要在节点机器,对kubectl进行集群访问配置。
资源浪费。 约束限制 专属资源池状态处于“运行中”。 操作步骤 登录ModelArts管理控制台,在左侧导航栏中选择“AI专属资源池 > 弹性集群Cluster”,进入“Standard资源池”页面。 在资源池列表中,选择某个资源池右侧操作列的“ > 设置作业类型”。 在“设置作
容器镜像选择上一步上传到SWR的镜像。 代码目录 必填,选择训练代码文件所在的OBS目录。 需要提前将代码上传至OBS桶中,目录内文件总大小要小于或等于5GB,文件数要小于或等于1000个,文件深度要小于或等于32。 训练代码文件会在训练作业启动的时候被系统自动下载到训练容器的“${MA_
ssion鉴权。 将自定义的推理文件和模型配置文件保存在训练生成的模型文件目录下。如训练生成的模型保存在“/home/ma-user/work/tensorflow_mlp_mnist_local_mode/train/model/”中,则推理文件“customize_service
容器引擎选择Containerd。 图1 购买Lite专属池 k8s Cluster资源配置 如果已完成集群资源购买和开通,则需要对网络、存储、容器镜像等内容进行配置。请参考k8s Cluster环境配置详细流程。 kubectl访问集群配置 本步骤需要在节点机器,对kubectl进行集群访问配置。
容器引擎选择Containerd。 图1 购买Lite专属池 k8s Cluster资源配置 如果已完成集群资源购买和开通,则需要对网络、存储、容器镜像等内容进行配置。请参考k8s Cluster环境配置详细流程。 kubectl访问集群配置 本步骤需要在节点机器,对kubectl进行集群访问配置。
在JupyterLab的“Launcher”页签下,以TensorFlow为例,您可以单击TensorFlow,创建一个用于编码的文件。 图1 选择不同的AI引擎 文件创建完成后,系统默认进入“JupyterLab”编码页面。 图2 进入编码页面 调用mox.file 输入如下代码,实现如下几个简单的功能。
重复打印日志,该日志表示正在读取远端存在的文件,当文件列表读取完成以后,开始下载数据。如果文件比较多,那么该过程会消耗较长时间。 处理方法 在创建训练作业时,数据可以保存到OBS上。不建议使用TensorFlow、MXNet、PyTorch的OBS接口直接从OBS上读取数据。 如果文件较小,可以将OBS上的数据保存成“
处理后的数据文件 Step5 启动训练服务 训练至少需要单机8卡。建议手动下载所需的权重文件,放在weights文件夹下。在/home/ma-user/ascendcloud-aigc-algorithm-open_sora/目录下进行操作。 创建weights文件夹。 mkdir
etrain_hf中的文件与原始Hugging Face模型中的文件进行对比,查看是否缺少如tokenizers.json、tokenizer_config.json、special_tokens_map.json等tokenizer文件或者其他json文件。若缺少则需要直接复制
etrain_hf中的文件与原始Hugging Face模型中的文件进行对比,查看是否缺少如tokenizers.json、tokenizer_config.json、special_tokens_map.json等tokenizer文件或者其他json文件。若缺少则需要直接复制
参考本地安装ModelArts SDK完成SDK的安装。 Step2:下载ma-cli 下载ma-cli软件包。 完成软件包签名校验。 下载软件包签名校验文件。 安装openssl并执行如下命令进行签名校验。 openssl cms -verify -binary -in D:\ma_cli-latest-py3-none-any