检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
pip源中的pip包更新了,之前能跑通的代码,在包更新之后产生了不兼容的情况,例如transformers包,导致import的时候出现了错误。 用户代码问题,出现了内存越界、非法访问内存空间的情况。 未知系统问题导致,建议先尝试重建作业,重建后仍然失败,建议提工单定位。 处理方法 如果存在之前能跑通,什
业务代码问题 日志提示“pandas.errors.ParserError: Error tokenizing data. C error: Expected .* fields” 日志提示“max_pool2d_with_indices_out_cuda_frame failed
实践,并对于实际的操作原理和迁移流程进行说明,包含迁移后的精度和性能验证、调试方法说明。 核心概念 推理业务昇腾迁移整体流程及工具链 图1 推理业务昇腾迁移整体路径 推理业务昇腾迁移整体分为七个大的步骤,并以完整工具链覆盖全链路: 迁移评估:针对迁移可行性、工作量,以及可能的性能收益进行大致的预估。
动态shape 在某些推理场景中,模型输入的shape可能是不固定的,因此需要支持用户指定模型的动态shape,并能够在推理中接收多种shape的输入。在CPU上进行模型转换时无需考虑动态shape问题,因为CPU算子支持动态shape;而在Ascend场景上,算子需要指定具体的
迁移评估,以确保迁移项目能顺利实施。 通用的推理业务及LLM推理可提供下表进行业务迁移评估: 表1 通用的推理业务及LLM推理业务迁移评估表 收集项 说明 实际情况(请填写) 项目名称 项目名称,例如:XXX项目。 - 使用场景 例如: 使用YOLOv5算法对工地的视频流裁帧后进行安全帽检测。
几个固定档位的分档shape代替。使用converter_lite转换模型时,也分为静态shape和分档shape两种方式,需要根据具体的业务需求使用对应的转换方式。本次迁移使用的是静态shape方式进行模型转换。 获取模型shape 由于在后续模型转换时需要知道待转换模型的sh
DevServer 开通裸金属服务器资源请见DevServer资源开通,在裸金属服务器上搭建迁移环境请见裸金属服务器环境配置指导。 父主题: GPU推理业务迁移至昇腾的通用指导
基于AIGC模型的GPU推理业务迁移至昇腾指导 场景介绍 迁移环境准备 pipeline应用准备 应用迁移 迁移效果校验 模型精度调优 性能调优 常见问题 父主题: GPU业务迁移至昇腾训练推理
日志提示Compile graph failed 日志提示Custom op has no reg_op_name attr 父主题: GPU推理业务迁移至昇腾的通用指导
根据报错日志分析,模型目录下存在多余文件“/home/mind/model/v0432/cdn_short.pt”。 处理方法 在模型目录中删除“/home/mind/model/v0432/cdn_short.pt”文件,重新导入模型后进行部署在线服务即可正常预测。 父主题: 服务部署
GPU推理业务迁移至昇腾的通用指导 简介 昇腾迁移快速入门案例 迁移评估 环境准备 模型适配 精度校验 性能调优 迁移过程使用工具概览 常见问题 父主题: GPU业务迁移至昇腾训练推理
test/data/aoe”路径下,同时会在aoe_output路径下输出对应的mindir模型,由于当前模型并没有吸收知识库信息,所以性能不佳,因此需要在保留AOE知识库的情况下,再次进行转换,以达到较优性能。 删除编译缓存atc_data。 注意相比第一次清除缓存操作,本次保留了AOE知识库。
应用迁移 模型适配 pipeline代码适配 父主题: 基于AIGC模型的GPU推理业务迁移至昇腾指导
模型适配 基于MindSpore Lite的模型转换 动态shape 父主题: GPU推理业务迁移至昇腾的通用指导
wikipedia、diffusers github、Stable Diffusion with diffusers。 推理业务迁移到昇腾的通用流程,可参考GPU推理业务迁移至昇腾的通用指导。 由于Huggingface网站的限制,访问Stable Diffusion链接时需使用代理服务器,否则可能无法访问网站。
为了简化用户使用,ModelArts提供了Tailor工具便于用户进行Benchmark精度测试,具体使用方式参考Tailor指导文档。 父主题: GPU推理业务迁移至昇腾的通用指导
time() print(f"infer time {end_time - start_time}") 父主题: 基于AIGC模型的GPU推理业务迁移至昇腾指导
模型精度调优 场景介绍 精度问题诊断 精度问题处理 父主题: 基于AIGC模型的GPU推理业务迁移至昇腾指导
性能调优 单模型性能测试工具Mindspore lite benchmark 单模型性能调优AOE 父主题: 基于AIGC模型的GPU推理业务迁移至昇腾指导
--optimize=ascend_oriented 自动高性能算子生成工具AKG更多介绍可参考图算融合配置说明和MindSpore AKG。 父主题: GPU推理业务迁移至昇腾的通用指导