检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
h/edge。默认为real-time。 real-time代表在线服务,将模型部署为一个Web Service,并且提供在线的测试UI与监控能力,服务一直保持运行。 batch为批量服务,批量服务可对批量数据进行推理,完成数据处理后自动停止。 edge表示边缘服务,通过华为云智
estimator.fit(inputs=[input_data], job_name=job_name) 多次调试。 上一步执行过程中,训练脚本的日志会实时打印到控制台,如果用户的代码或者参数有误的话,可以很方便的看到。在Notebook中经过多次调试,得到想要的结果后,可以进行下一步。 查询训练支持的计算节点类型和最大个数。
工具查看 nerdctl --namespace k8s.io image list 步骤三 构建ModelArts Lite训练镜像 获取模型软件包,并上传到机器SFS Turbo的目录下(可自定义路径),获取地址参考表1。 解压AscendCloud压缩包及该目录下的训练代码AscendCloud-LLM-6
自定义镜像: 如果先前基于预置框架且通过指定代码目录和启动文件的方式来创建的算法;但是随着业务逻辑的逐渐复杂,您期望可以基于预置框架修改或增加一些软件依赖的时候,此时您可以使用预置框架 + 自定义镜像的功能,即选择预置框架名称后,在预置框架版本下拉列表中选择“自定义”。 此功能与直接基于
地址{image_url}获取请参见表1。 docker pull {image_url} Step3 上传代码包和权重文件 上传安装依赖软件推理代码AscendCloud-LLM-6.3.907-xxx.zip和算子包AscendCloud-OPP-6.3.907-xxx.zip到主机中,包获取路径请参见表2。
方案优势 高准确性:利用LLM的强大语义理解能力,系统能够准确识别新闻内容的主题和关键词,实现高准确率的自动分类。 快速响应:系统能够实时处理新闻内容,快速完成分类,满足新闻时效性的要求。 可扩展性:随着模型的不断训练和优化,系统能够适应不断变化的新闻内容和分类需求。 降低人
storages=[storage] ) 作业类型节点结合可视化能力 节点可视化特性将用户在使用Workflow时产生的一些衡量指标进行一个可视化的展示,支持数据的实时可视化,并且允许独立呈现可视化外挂节点。形态上基于作业类型节点原有的使用方式,新增一个针对metrics信息展示的输出,通过MetricsConfig对象进行配置。
推理方式,取值为real-time/batch/edge。 real-time代表在线服务,将模型部署为一个Web Service,并且提供在线的测试UI与监控能力,服务一直保持运行。 batch为批量服务,批量服务可对批量数据进行推理,完成数据处理后自动停止。 edge表示边缘服务,通过华为云智
5:完成验收时, 只驳回单张验收驳回的样本及未处理的样本。 checking_stats CheckTaskStats object 验收任务实时验收报告。 checking_task_id String 当前验收任务ID。 overwrite_last_result Boolean
5:完成验收时, 只驳回单张验收驳回的样本及未处理的样本。 checking_stats CheckTaskStats object 验收任务实时验收报告。 checking_task_id String 当前验收任务ID。 overwrite_last_result Boolean
地址{image_url}获取请参见表1。 docker pull {image_url} Step3 上传代码包和权重文件 上传安装依赖软件推理代码AscendCloud-LLM-6.3.908-xxx.zip和算子包AscendCloud-OPP-6.3.908-xxx.zip到主机中,包获取路径请参见表2。
代码的存储。在Notebook调测完成,可以直接指定对应的对象存储路径作为启动训练的代码路径,方便临时修改。 训练观测。可以将训练日志等输出路径进行挂载,在Notebook中实时查看和观测,特别是利用TensorBoard可视化功能完成对训练输出的分析。 PFS是一种经过优化的高性能对象存储文件系统,存储成本低,吞
my_deeplearning_image:v1 上述命令表示把宿主机的"/mnt/sfs_turbo"目录挂载到容器的"/sfs"目录,在宿主机和容器对应目录的所有改动都是实时同步的。 分析错误时:训练镜像先看日志,推理镜像先看API的返回。 可以通过命令查看容器输出到stdout的所有日志: docker logs
建议使用官方提供的镜像部署推理服务。镜像地址{image_url}获取请参见表1。 docker pull {image_url} 步骤三 上传代码包和权重文件 上传安装依赖软件推理代码AscendCloud-LLM-6.3.909-xxx.zip和算子包AscendCloud-OPP-6.3.909-xxx.zip到主机中,包获取路径请参见表2。
建议使用官方提供的镜像部署推理服务。镜像地址{image_url}获取请参见表1。 docker pull {image_url} 步骤三 上传代码包和权重文件 上传安装依赖软件推理代码AscendCloud-LLM-6.3.909-xxx.zip和算子包AscendCloud-OPP-6.3.909-xxx.zip到主机中,包获取路径请参见表2。
地址{image_url}获取请参见表1。 docker pull {image_url} Step3 上传代码包和权重文件 上传安装依赖软件推理代码AscendCloud-LLM-6.3.908-xxx.zip和算子包AscendCloud-OPP-6.3.908-xxx.zip到主机中,包获取路径请参见表2。
my_deeplearning_image:v1 上述命令表示把宿主机的"/mnt/sfs_turbo"目录挂载到容器的"/sfs"目录,在宿主机和容器对应目录的所有改动都是实时同步的。 分析错误时:训练镜像先看日志,推理镜像先看API的返回。 可以通过命令查看容器输出到stdout的所有日志: docker logs
ModelArts.3508 Failed to query the service monitoring information. 服务监控信息获取失败。 联系服务运维人员解决。 500 ModelArts.3509 Failed to query edge nodes. 节点查询失败。