检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
geo_range:定义了数据覆盖的地理范围,纬度(lat)从-90.0到90.0,经度(lon)从0.0到360.0。 time_range:数据的时间范围,时间戳格式为毫秒数。 total_size:数据文件的总大小,单位为字节。 surface_features:地表特征变量列表,例如气压(P)、温度(T)、风速(U、V)。
> 模型部署”,完成创建科学计算大模型部署任务后,可以查看模型的部署状态。 当状态显示为“运行中”时,表示模型已成功部署。此过程可能需要较长时间,请耐心等待。 可单击模型名称可进入详情页,查看模型的部署详情、部署事件、部署日志等信息。 图1 部署详情 父主题: 部署科学计算大模型
包年/包月和按需计费模式哪个更划算 包年/包月和按需计费模式可针对不同业务需求进行选择: 对于长时间且稳定的业务需求,包年/包月模式通常更划算,因为它能提供更低的平均成本和一定的稳定性。 对于短期、突发或不可预测的业务需求,按需计费模式则更为合适,因为它提供了更高的灵活性和避免长期预付费可能带来的压力。
Studio大模型开发平台,在“我的空间”模块,单击进入所需空间。 单击左侧导航栏“调用统计”,选择“NLP”页签。 选择当前调用的NLP大模型,可以按照不同时间跨度查看当前模型的调用总数、调用失败的次数、调用的总Tokens数、以及输入输出的Tokens数等基本信息。 此外,该功能还提供了可视化界
在左侧导航栏中选择“模型开发 > 模型部署”,完成创建CV大模型部署任务后,可以查看模型的部署状态。 当状态显示为“运行中”时,表示模型已成功部署。此过程可能需要较长时间,请耐心等待。 可单击模型名称可进入详情页,查看模型的部署详情、部署事件、部署日志等信息。 父主题: 部署CV大模型
2024年10月发布的版本,用于天气基础要素预测,时间分辨率为1小时,1个训练单元起训及1个实例部署。 Pangu-AI4S-Weather_1h-3.0.0 2024年12月发布的版本,相较于10月发布的版本模型运行速度有提升,用于天气基础要素预测,时间分辨率为1小时,1个训练单元起训及1个实例部署。
> 模型部署”,完成创建NLP大模型部署任务后,可以查看模型的部署状态。 当状态显示为“运行中”时,表示模型已成功部署。此过程可能需要较长时间,请耐心等待。 可单击模型名称可进入详情页,查看模型的部署详情、部署事件、部署日志等信息。 图1 部署详情 父主题: 部署NLP大模型
在左侧导航栏中选择“模型开发 > 模型部署”,完成创建预测大模型部署任务后,可以查看模型的部署状态。 当状态显示为“运行中”时,表示模型已成功部署。此过程可能需要较长时间,请耐心等待。 可单击模型名称可进入详情页,查看模型的部署详情、部署事件、部署日志等信息。 父主题: 部署预测大模型
在左侧导航栏中选择“模型开发 > 模型部署”,完成创建专业大模型部署任务后,可以查看模型的部署状态。 当状态显示为“运行中”时,表示模型已成功部署。此过程可能需要较长时间,请耐心等待。 可单击模型名称可进入详情页,查看模型的部署详情、部署事件、部署日志等信息。 父主题: 部署专业大模型
创建多语言文本翻译插件 准备工作 提前开通“文本翻译”服务。登录自然语言处理控制台,切换区域至华北-北京四,在“总览”页面下方开通“文本翻译”服务。 图1 开通文本翻译服务 操作流程 创建多语言文本翻译插件的流程见表1。 表1 创建多语言文本翻译插件流程 操作步骤 说明 步骤1:获取文本翻译服务Token与调用地址
start_time_begin 是 String 起报时间区间起点(YYYYMMDDHH时间戳)。 start_time_end 是 String 起报时间区间终点(YYYYMMDDHH时间戳)。 start_time_interval_hours 否 Long 起报时间间隔小时数,默认6。取值范围:[1
高质量内容。 推理速度快 盘古大模型采用了高效的深度学习架构和优化算法,显著提升了推理速度。在处理请求时,模型能够更快地生成结果,减少等待时间,从而提升用户体验。这种快速的推理能力使盘古大模型适用于广泛的应用场景。在需要实时反馈的业务中,如在线客服和智能推荐,盘古大模型能够迅速提供准确的结果。
start_time_begin 是 String 起报时间区间起点(YYYYMMDDHH时间戳)。 start_time_end 是 String 起报时间区间终点(YYYYMMDDHH时间戳)。 start_time_interval_hours 否 Long 起报时间间隔小时数,默认6。取值范围:[1
查看数据血缘。在“数据血缘”页签,可以查看当前数据集所经历的完整操作,如加工、标注等。 查看操作记录。在“操作记录”页签,可以查看当前数据集的操作记录,如创建该数据集的时间、状态、操作人员等。 删除原始数据集。单击操作列的“删除”,并在弹窗中单击“确定”。 删除原始数据集属于高危操作,删除前,请确保该数据集不再使用。
提示词工程平台以提示词工程任务为管理维度,一个任务代表一个场景或一个调优需求,在提示词工程任务下可以进行提示词的调优、比较和评估。 提示词工程任务管理支持工程任务的创建、查询、修改、删除。 提示词撰写 提示词调优支持对提示词文本的编辑、提示词变量设置、提示词结果生成和调优历史记录管理。 提示词候选 提示词候选支持用户
Pangu-Predict-Table-TimSeries-2.0.0 该模型属于时间序列预测模型,用于基于时间序列数据预测未来值。 生成计划排期:根据历史生产数据和市场需求,预测未来的生产需求,优化生产计划。 2024年12月发布的版本,支持根据历史时间序列数据来预测未来的值,广泛应用于金融、销售预测、天气预报、能源消耗预测等领域。
单击左侧导航栏“工作台”,在“应用”页签,单击右上角“创建应用”。 在“创建应用”页面,填写应用名称与应用描述,单击页面左下角的图片可修改应用图标,单击“确定”,进入应用编排页面。 图1 应用编排页面 步骤2:配置Prompt 创建应用后,需要撰写提示词(Prompt),为A
'ext': 'mp4',//视频文件扩展名。 // 标注 34.5, 42.4 分别表示起始时间和结束时间,单位为s。 // label 表示分类,必须是classes列表中的一个元素,表示该视频片段对应的事件或动作类型。
创建插件 创建插件的步骤如下: 登录ModelArts Studio大模型开发平台,在“我的空间”模块,单击进入所需空间。 在左侧导航栏中选择“Agent开发”,跳转至Agent开发平台。 单击左侧导航栏“工作台”,在“插件”页签,单击右上角“创建插件”。 在“创建插件”页面,填
创建NLP大模型评测任务 创建NLP大模型评测任务前,请确保已完成创建NLP大模型评测数据集操作。 预训练的NLP大模型不支持评测。 创建NLP大模型自动评测任务 创建NLP大模型自动评测任务步骤如下: 登录ModelArts Studio大模型开发平台,在“我的空间”模块,单击进入所需空间。