检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
dumps(list_meeting)), "return_type": str(pickle.dumps(MeetingInfo)) } # 工具管理面添加工具到toolRetriever,这里实际可以添加若干个工具 css_tool_retriever.add_tools_from_m
setToolId("reserve_meeting_room"); toolMetadata.setToolMetadata(toolMetaData); // 工具管理面添加工具到toolRetriever,这里实际可以添加若干个工具 cssToolRetriever.addToolsFromMetadata(Collections
网页搜索 开启网页搜索后,可以通过调用web搜索来解决模型对于事实类问题回答不好的现象。 添加一个工具 用于拓展AI助手功能,使其能够与外部系统进行交互。可以直接创建一个工具,或者从搜索框中选择已经创建好的工具。 知识库 通过知识库提升AI助手在特定领域问题的回答效果。 高级配置 工具召回策略
考虑模型在特定领域的性能。 创建一个训练数据集 登录盘古大模型套件平台。 在左侧导航栏中选择“数据工程 > 数据管理”,单击界面右上角“创建数据集”。 图1 数据管理 在创建数据集弹出框中选择“创建一个训练数据集”,单击“创建”。 图2 创建训练数据集 进入训练数据集页面后,需要进行训练配置、数据配置和基本配置。
用于控制生成文本中的重复程度。 词汇重复度控制 用于调整模型对频繁出现的Token的处理方式。 历史对话保留轮数 选择“多轮对话”功能时具备此参数,表示系统能够记忆的历史对话数。 父主题: 调用盘古大模型
选择盘古-NLP-N4系列模型时显示,配置最大Token长度。 服务名称 在线服务的名称。 描述 在线服务的简要描述。 订阅提醒 勾选订阅提醒,并添加手机号/邮箱,系统将在训练任务完成或重要事件发生时,发送提醒。 表2 部署实例量与推理单元数关系 模型类型 推理资源 盘古-NLP-N1系列模型 4K版本:
ask(buildMultiTurnChatMessages()).getAnswer(); 带人设的问答:支持在LLM配置项中设置人设,在LLM问答时系统会自动加上该人设,同时支持以上问答功能(暂不支持GALLERY三方模型)。 import com.huaweicloud.pangu.dev
properties文件,并根据实际需要配置相应的值。 在环境变量中配置“SDK_CONF_PATH”指向该配置文件: # 建议在业务项目入口处配置 import os os.environ["SDK_CONFIG_PATH"] = "./llm.properties" 完整配置项如下: 配置项中的密码等字段
的服务。 模型效果优秀 经过海量数据训练,盘古大模型在各种自然语言处理任务中展现出卓越的性能。无论是文本分类、情感分析、机器翻译,还是问答系统,模型都能以高准确率完成任务,为用户提供高质量的输出结果。 这种卓越的表现源于其先进的算法和深度学习架构。盘古大模型能够深入理解语言的内在
历史对话保留轮数 选择要包含在每个新API请求中的过去消息数。这有助于为新用户查询提供模型上下文。参数设置为10,表示包括5个用户查询和5个系统响应。该参数只涉及多轮对话功能。 体验预置模型文本补全能力 进入“文本补全”页签,选择模型与示例,参数设置为默认参数,在输入框输入问题,单击“生成”,模型将基于问题进行回答。
历史对话保留轮数 选择要包含在每个新API请求中的过去消息数。这有助于为新用户查询提供模型上下文。参数设置为10,表示包括5个用户查询和5个系统响应。该参数只涉及多轮对话功能。 体验预置模型文本补全能力 进入“文本补全”页签,选择模型与示例,参数设置为默认参数,在输入框输入问题,单击“生成”,模型将基于问题进行回答。
llm_config) pangu_llm.ask(messages).answer 带人设的问答:支持在LLM配置项中设置人设,在LLM问答时系统会自动加上该人设,同时支持以上问答功能(暂不支持GALLERY三方模型)。 import sys from pangukitsappdev
减少计算资源和时间消耗,且依旧可以保持较好的模型性能。 训练模型 选择训练所需要的模型。支持选择“预置模型”或者“我的模型”。 预置模型:系统提供的LLM(大语言)预置模型。 我的模型:经过用户预训练或者微调训练后的模型。 模型详细介绍请参见选择模型与训练方法。 训练参数 指定用于训练模型的超参数。
s/{deploymentId} ; # sdk.llm.pangu.url= 创建代码文件(chat.py),示例如下: import os import sys import gradio as gr from pangukitsappdev.api.llms.llm_config
oymentId} ; # sdk.llm.pangu.url= 创建代码文件(doc_summary.py),示例如下: import os import gradio as gr import docx import time from pangukitsappdev.skill
预期Agent返回reportType为欠税信息体检的Json,呈现给终端用户 session = agent.run_step(session) # 终端用户确认,调用外部系统,进一步确认公司名称和编号,补充信息后,让Agent继续执行 AgentSessionHelper.set_user_feedback(session