检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
sim、Matlab等模型管理的基础元模型,实现了模型族与元模型共享。 对接了多种外部业务系统,基于元模型实例化装备型号数据,搭建和管理航空装备数字主线,并支撑多场景的数据分析应用。 支持调用多种算法,如机器学习、深度学习、机理等多种算法的调用,并分析输出多种类型的图表 低代码平
产品优势 自研可控 自研底层技术,自主可控。提供通用数字资产管理能力,用户可自由定制构建业务场景。 安全可信 金融级安全环境,保障区块链、合约服务稳定可靠运行、数字资产可靠流转。 超高性能 支持五万次/秒并发链上数字资产创建,支持百亿级数字资产发行流转。 简单易用 仅需SDK对接
基本概念 AI引擎 可支持用户进行机器学习、深度学习、模型训练作业开发的框架,如Tensorflow、Spark MLlib、MXNet、PyTorch、华为自研AI框架MindSpore等。 数据集 某业务下具有相同数据格式的数据逻辑集合。 特征操作 特征操作主要是对数据集进行特征处理。
网络AI框架根据业务场景,可部署在嵌入式网元、网管系统或云侧(私有云或公有云),与不同层级网络控制系统对接,实时采集业务数据,基于最优算法模型实时调整网络运行配置,针对故障实施自动隔离与自动修复,大幅提升网络使用效率与维护效率。 X 模型训练服务 模型训练服务为开发者提供电信领域一站式模型
什么是图像搜索 图像搜索(Image Search,又称为多媒体搜索)基于深度学习与图像识别技术,是一套开箱即用的场景化搜索服务,支持图像等数据的管理和搜索,提供多种通用预置场景的搜索能力,并支持低成本、高敏捷的定制化服务,为用户提供安全、可靠、快速、准确的一键部署场景化内容搜索需求。
数据有诸多好处,它可以保证不同服务器上访问数据的一致性,减少不同服务器上分别保留数据带来的数据冗余等。另外以 AI 生态中非常流行的开源深度学习框架PyTorch为例,PyTorch默认会通过文件接口访问数据,AI算法开发人员也习惯使用文件接口,因此文件接口是最友好的共享存储访问方式。
数据有诸多好处,它可以保证不同服务器上访问数据的一致性,减少不同服务器上分别保留数据带来的数据冗余等。另外以 AI 生态中非常流行的开源深度学习框架PyTorch为例,PyTorch默认会通过文件接口访问数据,AI算法开发人员也习惯使用文件接口,因此文件接口是最友好的共享存储访问方式。
产品优势 多域协同 支持在分布式的、信任边界缺失的多个参与方之间建立互信空间; 实现跨组织、跨行业的多方数据融合分析和多方联合学习建模。 灵活多态 支持对接主流数据源(如MRS、 DLI、 RDS、 Oracle等)的联合数据分析; 支持对接多种深度学习框架(TICS,TensorFlow)的联邦计算;
产品优势 基因容器基于Kubernetes智能化基因计算任务调度和Spark等加速服务,为您提供低成本高性能的基因测序解决方案。支持对接深度学习框架,方便您深度解读报告。 秒级并发 基因容器利用容器技术的秒级并发能力,可将WGS从30小时缩短至5小时以内,对比同类竞品,使用相同样本的情况下,资源利用率大幅提升。
实现对大模型输出的精确把控,不用进行强化学习,也可以准确判断和学习到使用者的偏好,最后,DPO算法还可以与其他优化算法相结合,进一步提高深度学习模型的性能。 RM奖励模型(Reward Model):是强化学习过程中一个关键的组成部分。它的主要任务是根据给定的输入和反馈来预测奖励
GPU加速型:支持创建含GPU资源的容器实例,适用于深度学习、科学计算、视频处理等场景。 目前,“华南-广州”、“华东-上海二”、“西南-贵阳一”区域暂不支持“GPU加速型”资源。 一个账号在一个区域,目前只能使用5个命名空间。 通用计算型和GPU加速型支持X86镜像。 命名空间与网络的关系 从网络角度,命
Processing)进行数据分析,探究一些深层次的关系和信息。但是不同的数据库之间很难做到数据共享,数据之间的集成与分析也存在非常大的挑战。 为解决企业的数据集成与分析问题,数据仓库之父比尔·恩门于1990年提出数据仓库(Data Warehouse)。数据仓库主要功能是将OLT
数据有诸多好处,它可以保证不同服务器上访问数据的一致性,减少不同服务器上分别保留数据带来的数据冗余等。另外以 AI 生态中非常流行的开源深度学习框架PyTorch为例,PyTorch默认会通过文件接口访问数据,AI算法开发人员也习惯使用文件接口,因此文件接口是最友好的共享存储访问方式。
GPU加速型实例包括计算加速型(P系列)和图形加速型(G系列),提供优秀的浮点计算能力,从容应对高实时、高并发的海量计算场景。特别适合于深度学习、科学计算、CAE、3D动画渲染、CAD等应用。 表5 GPU加速型规格详情 规格名称/ID CPU 内存 本地磁盘 扩展配置 physical
微认证是针对什么样的群体?面向对象? 微认证对学习对象没有特殊的要求,零基础也一样能够进行学习,可以根据自己的兴趣选择不同方向的微认证,一站式在线学习、实验与考试,快速获得场景化的技能提升。 父主题: 华为云微认证常见问题
实现对大模型输出的精确把控,不用进行强化学习,也可以准确判断和学习到使用者的偏好,最后,DPO算法还可以与其他优化算法相结合,进一步提高深度学习模型的性能。 RM奖励模型(Reward Model):是强化学习过程中一个关键的组成部分。它的主要任务是根据给定的输入和反馈来预测奖励
实验对我课程学习有什么帮助? 每个微认证的实验与课程相匹配,通过实验的实践操作与练习可以加深课程学习与理解,获得场景化的技能提升。 父主题: 微认证实验常见问题
科学计算大模型训练流程与选择建议 科学计算大模型训练流程介绍 科学计算大模型的训练主要分为两个阶段:预训练与微调。 预训练阶段:预训练是模型学习基础知识的过程,基于大规模通用数据集进行。例如,在区域海洋要素预测中,可以重新定义深海变量、海表变量,调整深度层、时间分辨率、水平分辨率
图7 基本信息 图8 任职要求 岗位学习方案 岗位关联已有学习项目,可以从岗位学习方案中关联已有学习项目,也可以新建学习项目。学习项目的权限与岗位的权限相同。 人才发展-人才发展方案-岗位学习方案-【配置方案】 图9 配置方案 图10 岗位信息 图11 任职资格 图12 学习方案 父主题: