检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
获取用户token 可信计算节点管理 连接器管理 数据集注册管理 任务管理 通知管理 数据集管理 多方安全计算作业管理 可信联邦学习作业管理 联邦预测作业管理 作业实例管理 联邦学习作业管理
编辑批量预测作业 用户登录进入计算节点页面。 在左侧导航树上依次选择“作业管理 > 可信联邦学习”,打开可信联邦学习作业页面。 在“联邦预测”页面,选择批量预测的Tab页,找到待开发的作业,单击“开发”。 图1 开发作业 在弹出的对话框中编辑“选择模型”。只允许选择模型,其它作业参数暂时不支持修改。
可信节点管理 用于获取计算节点列表。 数据集管理 用于查询空间已注册数据集列表。 联邦分析作业管理 用于查询多方安全计算作业列表。 联邦学习作业管理 用于查询联邦学习作业列表。 作业实例管理 用于查询作业的历史实例列表。 审计日志管理 用于查询审计日志。 表2 TICS计算节点API接口说明
TICS计算节点需独享ief纳管节点。 考虑docker\ief边缘服务对资源的占用,建议策略分配参考表1。 表1 策略分配 纳管节点规格 CPU(分析+学习) 内存(分析+学习) 32U64G <=26 <=50G 64U128G <=50 <=100G
Task) 作业实例拆解出的更细粒度任务。 多方安全计算 允许多合作方参与的结构化数据SQL分析作业。 可信联邦学习 允许多合作方参与的模型训练、评估作业。 联邦预测学习 允许多合作方参与的样本联合预测作业。 存储方式 指计算节点所属的CCE或IEF容器的工作负载,目前支持“OBS
String 作业名称,最大长度128 job_type String 作业类型。作业类型:SQL.联合SQL分析,HFL.横向联邦学习,VFL.纵向联邦学习,PREDICT.预测 creatorName String 创建人名称,最大值128 create_time String 创建时间。
单独使用场景 数据持有双方为获取己方与对方数据的交集,在不暴露其它数据的情况下,将需要获取交集的那一部分数据与对方的数据,通过创建并执行可信智能计算服务提供的隐私求交作业,可以得到最终交集数据并保存下来,用于后续的数据分析以及使用。 联合使用场景 用于纵向联邦学习中数据对齐。 父主题: 隐私求交
使用场景 多方安全计算场景 纵向联邦建模场景 隐私求交黑名单共享场景 实时隐匿查询场景 可信数据交换场景 横向联邦学习场景
空间API 统计信息管理 空间管理 数据集管理 联邦分析作业管理 联邦学习作业管理 作业实例管理 审计日志管理 可信节点管理
取值为0时系统默认返回第1页,与取值为1相同。 limit 是 Integer 查询个数。 查询返回连接器的个数,每页默认值是10,取值0-100,每页最多返回100个。 connector_query_type 否 String 连接器类型,主要分为多方安全计算连接器和可信联邦学习连接器。 多方安全计算连接器
纵向联邦建模场景 使用TICS多方安全计算进行联合样本分布统计 使用TICS可信联邦学习进行联邦建模 使用TICS联邦预测进行新数据离线预测 父主题: 使用场景
因此企业A希望与某大数据厂商B展开一项合作,基于双方共有的数据进行联邦建模,使用训练出的联邦模型对新数据进行联邦预测,筛选出高价值的潜在客户,再针对这些客户进行定向营销,达成提高营销效果、降低营销成本的业务诉求。 根据前一篇文章,企业A已经通过可信联邦学习功能训练出了一个预测客户时候是高价值用户的模型。
合作方、参与方: 空间成员,有权使用空间中的数据,或者将自有数据发布到空间,供其他合作方受限使用。 计算节点 部署在参与方侧,是可信智能计算与合作方侧数据的桥梁,保障数据按照合作方意愿受限使用。 计算节点是管理参与方数据的最小单位。部署计算节点时需要指定空间配置信息。在计算节点中支
创建训练模型时参数必须有"save_format": "SAVED_MODEL"。 创建联邦预测作业 实时预测作业在本地运行,目前仅支持深度神经网络FiBiNet算法。 用户登录进入计算节点页面。 在左侧导航树上依次选择“作业管理 > 联邦预测”,打开联邦预测作业页面。 在“联
资源池的名称,创建时会随机生成一个名字。 pool-6e8a 描述 对创建的资源池进行说明。 - 使用场景 分为Standard弹性集群与Lite弹性集群,联邦学习对接MA需要选择Lite弹性集群。 ModelArts Lite 计费模式 选择Lite弹性集群目前默认包年/包月计费模式。 包年/包月
批量预测作业必须选择一个当前计算节点发布的数据集。 创建联邦预测作业 批量预测作业在本地运行,目前支持XGBoost算法、逻辑回归LR算法、深度神经网络FiBiNet算法。 用户登录进入计算节点页面。 在左侧导航树上依次选择“作业管理 > 联邦预测”,打开联邦预测作业页面。 在“联
表。同时,有敏感信息的数据,还可以单独设置隐私策略,并在发布到空间侧后对其他参与方生效,限制敏感信息的使用。 数据预处理使用场景:训练机器学习模型前,可通过转换函数将特征数据转换成更加适合算法模型的特征数据。 父主题: 管理数据
获取认证信息 空间管理 组建空间 管理空间 代理管理 部署代理 管理代理 管理数据 管理任务 管理算法 审计日志 作业管理 多方安全计算作业 可信联邦学习作业 联邦预测作业 常见问题 了解更多常见问题、案例和解决方案 热门案例 什么是区域和可用区? 什么是区域和项目? 合作方如何获取租户名称?
响部分功能使用。 资源分配策略 CPU(Cores) - 用户可根据返回资源剩余规格,按照分析与学习需求,灵活分配核数。 内存(GiB) - 用户可根据返回资源剩余规格,按照分析与学习需求,灵活分配内存。容器预留部分管理资源,作业可用内存最大值设置为内存数值的0.6倍,且向下取整。
config_file_path String 配置文件地址 auto_generate_data Boolean 是否自动生成数据,即纵向联邦学习样本对齐之后的流程是否使用样本对其结果自动过滤。 ext LocalDatasetExtEntity object 扩展信息,包含mult