检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
model_name_or_path /home/ma-user/ws/tokenizers/Qwen2-72B 必须修改。加载tokenizer与Hugging Face权重时,对应的存放绝对或相对路径。请根据实际规划修改。 do_train true 指示脚本执行训练步骤,用来控制是
model_name_or_path /home/ma-user/ws/tokenizers/Qwen2-72B 必须修改。加载tokenizer与Hugging Face权重时存放目录绝对或相对路径。请根据实际规划修改。 template qwen 必须修改。用于指定模板。如果设置为"
model_name_or_path /home/ma-user/ws/tokenizers/Qwen2-72B 必须修改。加载tokenizer与Hugging Face权重时存放目录绝对或相对路径。请根据实际规划修改。 template qwen 必须修改。用于指定模板。如果设置为"
ModelArts-成长地图 | 华为云 ModelArts ModelArts是面向开发者的一站式AI开发平台,为机器学习与深度学习提供海量数据预处理及半自动化标注、大规模分布式Training、自动化模型生成,及端-边-云模型按需部署能力,帮助用户快速创建和部署模型,管理全周期AI工作流。
实现对大模型输出的精确把控,不用进行强化学习,也可以准确判断和学习到使用者的偏好,最后,DPO算法还可以与其他优化算法相结合,进一步提高深度学习模型的性能。 RM奖励模型(Reward Model):是强化学习过程中一个关键的组成部分。它的主要任务是根据给定的输入和反馈来预测奖励
实现对大模型输出的精确把控,不用进行强化学习,也可以准确判断和学习到使用者的偏好,最后,DPO算法还可以与其他优化算法相结合,进一步提高深度学习模型的性能。 RM奖励模型(Reward Model):是强化学习过程中一个关键的组成部分。它的主要任务是根据给定的输入和反馈来预测奖励
实现对大模型输出的精确把控,不用进行强化学习,也可以准确判断和学习到使用者的偏好,最后,DPO算法还可以与其他优化算法相结合,进一步提高深度学习模型的性能。 RM奖励模型(Reward Model):是强化学习过程中一个关键的组成部分。它的主要任务是根据给定的输入和反馈来预测奖励
的时候,可以使用预置框架构建自定义镜像,即在创建训练作业页面选择预置框架名称后,在预置框架版本下拉列表中选择“自定义”。 该方式的训练流程与直接基于预置框架创建的训练作业相同,例如: 系统会自动注入一系列环境变量,如下所示。 PATH=${MA_HOME}/anaconda/bin:${PATH}
model_name_or_path /home/ma-user/ws/tokenizers/Qwen2-72B 必须修改。加载tokenizer与Hugging Face权重时,对应的存放绝对或相对路径。请根据实际规划修改。 do_train true 指示脚本执行训练步骤,用来控制是
AI开发基本流程介绍 什么是AI开发 AI(人工智能)是通过机器来模拟人类认识能力的一种科技能力。AI最核心的能力就是根据给定的输入做出判断或预测。 AI开发的目的是什么 AI开发的目的是将隐藏在一大批数据背后的信息集中处理并进行提炼,从而总结得到研究对象的内在规律。 对数据进行
1*Pnt1(16GB)|CPU: 8核 64GB”:GPU单卡规格,16GB显存,适合深度学习场景下的算法训练和调测 Ascend规格 有Snt9(32GB显存)单卡、两卡、八卡等规格。配搭ARM处理器,适合深度学习场景下的模型训练和调测。 “存储配置” 包括“云硬盘EVS”、“弹性文件服务
作? 模型统一管理 针对自动学习项目,当模型训练完成后,其生成的模型,将自动进入“模型管理”页面,如下图所示。模型名称由系统自动命名,前缀与自动学习项目的名称一致,方便辨识。 自动学习生成的模型,不支持下载使用。 图1 自动学习生成的模型 自动学习生成的模型,支持哪些其他操作 支持部署为在线服务、批量服务或边缘服务。
种方式不仅能够进行依赖管理,而且可以方便的完成工作环境切换。配合ModelArts提供的云化容器资源使用,可以更加快速、高效地进行AI开发与模型实验的迭代等。 本章节会先介绍镜像相关概念,然后介绍预置镜像和自定义镜像使用场景,并且提供自定义镜像制作的相关指导。 概念解释 预置镜像
创建ModelArts数据增强任务 前提条件 数据已准备完成:已经创建数据集或者已经将数据上传至OBS。 确保您使用的OBS与ModelArts在同一区域。 创建数据处理任务 登录ModelArts管理控制台,在左侧的导航栏中选择“数据准备>数据处理”,进入“数据处理”页面。 在
的灵活成本效益资源配置方案,有效避免了资源闲置与浪费,降低了进入AI领域的门槛。 架构强调高可用性,多数据中心部署确保数据与任务备份,即使遭遇故障,也能无缝切换至备用系统,维持模型训练不中断,保护长期项目免受时间与资源损耗,确保进展与收益。 大模型应用开发,帮助开发者快速构建智能Agents
可以重写的方法有以下几种。 表2 重写方法 方法名 说明 __init__(self, model_name, model_path) 初始化方法,适用于深度学习框架模型。该方法内加载模型及标签等(pytorch和caffe类型模型必须重写,实现模型加载逻辑)。 __init__(self, model_path)
Standard自定义算法实现手写数字识别 本文为用户提供如何将本地的自定义算法通过简单的代码适配,实现在ModelArts上进行模型训练与部署的全流程指导。 场景描述 本案例用于指导用户使用PyTorch1.8实现手写数字图像识别,示例采用的数据集为MNIST官方数据集。 通过
Standard自定义算法实现手写数字识别 本文为用户提供如何将本地的自定义算法通过简单的代码适配,实现在ModelArts上进行模型训练与部署的全流程指导。 场景描述 本案例用于指导用户使用PyTorch1.8实现手写数字图像识别,示例采用的数据集为MNIST官方数据集。 通过
充足澎湃算力,最佳实践算力推荐方案,提升实践效率和成本 AI Gallery深谙开发者在人工智能项目推进过程中面临的实际困难,尤其是高昂的模型训练与部署成本,这往往成为创意落地的阻碍。通过大量开发者实践,针对主流昇腾云开源大模型,沉淀最佳的算力组合方案,为开发者在开发模型的最后一步,提供
欠拟合的解决方法有哪些? 模型复杂化。 对同一个算法复杂化。例如回归模型添加更多的高次项,增加决策树的深度,增加神经网络的隐藏层数和隐藏单元数等。 弃用原来的算法,使用一个更加复杂的算法或模型。例如用神经网络来替代线性回归,用随机森林来代替决策树。 增加更多的特征,使输入数据具有更强的表达能力。