检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
在ModelArts进行AI全流程开发时,会产生计算资源的计费,计算资源为进行运行自动学习、Workflow、开发环境、模型训练和部署服务的费用。具体内容如表1所示。 表1 计费项 计费项 计费项说明 适用的计费模式 计费公式 计算资源 专属资源池 使用计算资源的用量。 具体费用可参见ModelArts价格详情。
gpu.memoryUtil*100, gpu.memoryTotal)) 注:用户在使用pytorch/tensorflow等深度学习框架时也可以使用框架自带的api进行查询。 父主题: Standard Notebook
创建模型不同方式的场景介绍 AI开发和调优往往需要大量的迭代和调试,数据集、训练代码或参数的变化都可能会影响模型的质量,如不能统一管理开发流程元数据,可能会出现无法重现最优模型的现象。 ModelArts的模型可导入所有训练生成的元模型、上传至对象存储服务(OBS)中的元模型和容器镜像中
Gallery使用的Transformers机器学习库是一个开源的基于Transformer模型结构提供的预训练语言库。Transformers库注重易用性,屏蔽了大量AI模型开发使用过程中的技术细节,并制定了统一合理的规范。使用者可以便捷地使用、下载模型。同时支持用户上传自己的预训练模型
像分类”类型的标注作业,单击操作列的“智能标注”启动智能标注作业。 在弹出的“启动智能标注”对话框中,选择智能标注类型,可选“主动学习”或者“预标注”,详见表1和表2。 表1 主动学习 参数 说明 智能标注类型 “主动学习”。“主动学习”表示系统将自动使用半监督学习、难例筛选等多
多模态(Multimodality)是集成和处理两种或两种以上不同类型的信息或数据的方法和技术。具体来说,在机器学习和人工智能领域,多模态涉及的数据类型通常包括但不限于文本、图像、视频、音频和传感器数据。 多模态的主要目标是利用来自多种模态的信息来提升任务的表现力,提供更丰富的用户体验,或是获取更全
如果ModelArts的自动学习项目、Notebook实例、训练作业或在线服务,都已经处于停止状态,即总览页面没看到收费项目,仍然发现账号还在计费。 有以下几种可能情况: 因为您在使用ModelArts过程中,将数据上传至OBS进行存储,OBS会根据实际存储的数据进行计费。建议前往
用于指定预处理数据的工作线程数。随着线程数的增加,预处理的速度也会提高,但也会增加内存的使用。 per_device_train_batch_size 1 指定每个设备的训练批次大小。 gradient_accumulation_steps 8 必须修改,指定梯度累积的步数,这可以增加批次大小而不增加内存消耗。可参考表1
程分别从原始数据中加载batch的数据,最终将各个进程的梯度进行平均作为最终梯度,由于样本量更大,因此计算出的梯度更加可靠,可以适当增大学习率。 以下对resnet18在cifar10数据集上的分类任务,给出了单机训练和分布式训练改造(DDP)的代码。直接执行代码为多节点分布式训
订阅免费模型 发布免费模型 数据集的分享和下载 AI Gallery的资产集市提供了数据集的分享和下载。订阅者可在AI Gallery搜索并下载满足业务需要的数据集,存储至当前帐号的OBS桶或ModelArts的数据集列表。分享者可将已处理过的数据集发布至AI Gallery。 下载数据集
用于指定预处理数据的工作线程数。随着线程数的增加,预处理的速度也会提高,但也会增加内存的使用。 per_device_train_batch_size 1 指定每个设备的训练批次大小。 gradient_accumulation_steps 8 必须修改,指定梯度累积的步数,这可以增加批次大小而不增加内存消耗。可参考表1
用于指定预处理数据的工作线程数。随着线程数的增加,预处理的速度也会提高,但也会增加内存的使用。 per_device_train_batch_size 1 指定每个设备的训练批次大小。 gradient_accumulation_steps 8 必须修改,指定梯度累积的步数,这可以增加批次大小而不增加内存消耗。可参考表1
识别出此图片的数字是“2”。 本案例中使用的MNIST是比较简单的用做demo的数据集,配套算法也是比较简单的用于教学的神经网络算法。这样的数据和算法生成的模型仅适用于教学模式,并不能应对复杂的预测场景。即生成的模型对预测图片有一定范围和要求,预测图片必须和训练集中的图片相似(黑底白字)才可能预测准确。
容器内执行以下命令,指定NPU内存分配策略的环境变量,开启动态内存分配,即在需要时动态分配内存,可以提高内存利用率,减少OOM错误的发生。 export PYTORCH_NPU_ALLOC_CONF = expandable_segments:True 将yaml文件中的per_device_tr
识别出此图片的数字是“2”。 本案例中使用的MNIST是比较简单的用做demo的数据集,配套算法也是比较简单的用于教学的神经网络算法。这样的数据和算法生成的模型仅适用于教学模式,并不能应对复杂的预测场景。即生成的模型对预测图片有一定范围和要求,预测图片必须和训练集中的图片相似(黑底白字)才可能预测准确。
成功”的“事件发生时间”,创建成功的时间点对应界面上的“事件发生时间”。 对于公共资源池:计费的起点以实例创建成功的时间点为准,终点以实例停止或删除的时间为准。 实例具体如下: 因运行自动学习作业,而创建的对应的训练作业和在线服务。 因运行Workflow工作流,而创建的对应的训练作业和在线服务。
用于指定预处理数据的工作线程数。随着线程数的增加,预处理的速度也会提高,但也会增加内存的使用。 per_device_train_batch_size 1 指定每个设备的训练批次大小。 gradient_accumulation_steps 8 必须修改,指定梯度累积的步数,这可以增加批次大小而不增加内存消耗。可参考表1
en",则使用Qwen模板进行训练,模板选择可参照表1中的template列 output_dir /home/ma-user/ws/Qwen2-72B/sft-4096 必须修改。指定输出目录。训练过程中生成的模型参数和日志文件将保存在这个目录下。用户根据自己实际要求适配。 p
ModelArts开发环境针对推理昇腾迁移的场景提供了云上可以直接访问的开发环境,具有如下优点: 利用云服务的资源使用便利性,可以直接使用到不同规格的昇腾设备。 通过指定对应的运行镜像,可以直接使用预置的、在迁移过程中所需的工具集,且已经适配到最新的版本可以直接使用。 开发者可以通过浏
在数据管理功能中,针对“物体检测”或“图像分类”的数据集,在数据集中上传更多的图片时,是有限制的。要求单张图片大小不超过8MB,且只支持JPG、JPEG、PNG和BMP四种格式的图片。 请注意,针对自动学习功能中的添加图片,其图片大小限制不同,要求上传的图片大小不超过5MB。 解决方案: 方