检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
使用者的偏好,最后,DPO算法还可以与其他优化算法相结合,进一步提高深度学习模型的性能。 RM奖励模型(Reward Model):是强化学习过程中一个关键的组成部分。它的主要任务是根据给定的输入和反馈来预测奖励值,从而指导学习算法的方向,帮助强化学习算法更有效地优化策略 PPO强化学习(Proximal
使用者的偏好,最后,DPO算法还可以与其他优化算法相结合,进一步提高深度学习模型的性能。 RM奖励模型(Reward Model):是强化学习过程中一个关键的组成部分。它的主要任务是根据给定的输入和反馈来预测奖励值,从而指导学习算法的方向,帮助强化学习算法更有效地优化策略 PPO强化学习(Proximal
使用者的偏好,最后,DPO算法还可以与其他优化算法相结合,进一步提高深度学习模型的性能。 RM奖励模型(Reward Model):是强化学习过程中一个关键的组成部分。它的主要任务是根据给定的输入和反馈来预测奖励值,从而指导学习算法的方向,帮助强化学习算法更有效地优化策略 PPO强化学习(Proximal
nsorBoard是TensorFlow的可视化工具包,提供机器学习实验所需的可视化功能和工具。 TensorBoard是一个可视化工具,能够有效地展示TensorFlow在运行过程中的计算图、各种指标随着时间的变化趋势以及训练中使用到的数据信息。TensorBoard相关概念请参考TensorBoard官网。
不同用户间的专属资源池物理隔离,公共资源池仅提供逻辑隔离,专属资源池的隔离性、安全性要高于公共资源池。 专属资源池用户资源独享,在资源充足的情况下,作业是不会排队的;而公共资源池使用共享资源,在任何时候都有可能排队。 专属资源池支持打通用户的网络,在该专属资源池中运行的作业可以访
同计费类型/计费周期的资源,解决如下用户的使用场景: 用户在包长周期的资源池中无法扩容短周期的节点。 用户无法在包周期的资源池中扩容按需的节点(包括AutoScaler场景)。 支持SFS产品权限划分 支持SFS权限划分特性,可以实现训练场景中,挂载的SFS的文件夹能够权限控制,
默认选择“使用推荐权重”,支持选择“自定义权重”。 使用平台推荐的权重文件,可提高模型的训练、压缩、部署和调优等服务的使用效率。 权重文件指的是模型的参数集合。 使用推荐权重 参数配置完成后,单击“创建”,创建自定义模型。 在模型列表,单击模型名称可以进入详情页查看模型详细信息和任务。 当模型“状态”变成“创建成功”时,表示模型创建完成。
第三方案例来源为华为云开发者社区“云驻计划”。由于ModelArts产品的持续更新和迭代,第三方案例中的界面和步骤可能因时效性而与最新产品有所差异,仅供学习和参考。 表5 第三方案例列表 分类 文章名称 作者 Standard自动学习 2步打通ModelArts和Astro实现AI应用落地 胡琦 Standard开发环境
initialized”。 原因分析 按照之前支撑的经验,出现该问题的可能原因如下: 绝大部分都是确实是显存不够用。 还有较少数原因是节点故障,跑到特定节点必现OOM,其他节点正常。 处理方法 如果是正常的OOM,就需要修改一些超参,释放一些不需要的tensor。 修改网络参数,比如bat
tch等功能,能够提高GPU的使用率,改善推理服务的性能。 当从第三方推理框架迁移到使用ModelArts推理的模型管理和服务管理时,需要对原生第三方推理框架镜像的构建方式做一定的改造,以使用ModelArts推理平台的模型版本管理能力和动态加载模型的部署能力。本案例将指导用户完
控、仿真生成等全链路相关算法深度优化并快速迭代。 内容审核 深入业务场景,提供完备成熟的内容审核/CV场景快速昇腾迁移的方案,高效解决业务内容审核的算力/国产化需求,助力企业业务稳健发展。 政府 提高公共服务的效率和质量,加强公共安全,优化政策方案和决策过程等。 金融 为金融机构带来更加高效、智能、精准的服务。
Unit)和GPU在构造结构上存在差异,因此迁移过程并不是完全平替的关系。昇腾训练芯片属于NPU的范畴,虽然在表达层可以通过torch.cuda和torch.npu的形式来替代,但是真实的算子下发、显存管理、集合通信等存在差异,用户需要了解NPU的运行机制才能更好的使用NPU设备,同时在遇到问题时快速找到原因。 代码迁移操作步骤
参数类型 描述 name String 工作流存储的名称。填写1-64位,只包含英文、数字、下划线(_)和中划线(-),并且以英文开头的名称。 type String 工作流存储的类型,当前只支持obs。 path String 统一存储的根路径,当前只支持OBS路径。 表16 WorkflowAsset
以与其他优化算法相结合,进一步提高深度学习模型的性能。 SFT监督式微调(Self-training Fine-tuning):是一种利用有标签数据进行模型训练的方法。 它基于一个预先训练好的模型,通过调整模型的参数,使其能够更好地拟合特定任务的数据分布。 与从头开始训练模型相比
MaaS大模型即服务平台功能介绍 对于普通企业来说,大模型开发不仅需要强大的算力,还需要学习训练、部署的相关参数配置和规格选择等专业知识。ModelArts Studio大模型即服务平台(后续简称为MaaS服务)作为一个面向客户的大模型服务化平台,提供简单易用的模型开发工具链,支持大模型定制开发,让模型应用
导致出现“内存不够”问题,最终导致该容器实例崩溃。 出现此问题后,系统将自动重启Notebook,来修复实例崩溃的问题。此时只是解决了崩溃问题,如果重新运行训练代码仍将失败。 如果您需要解决“内存不够”的问题,建议您创建一个新的Notebook,使用更高规格的资源池,比如专属资源池来运行此训练代码。
ModelArts的AI Gallery中提供了大量免费的模型供用户一键部署,进行AI体验学习。 本文以“商超商品识别”模型为例,完成从AI Gallery订阅模型,到ModelArts一键部署为在线服务的免费体验过程。 “商超商品识别”模型可以识别81类常见超市商品(包括蔬菜、水果和饮品)
ModelArts的AI Gallery中提供了大量免费的模型供用户一键部署,进行AI体验学习。 本文以“商超商品识别”模型为例,完成从AI Gallery订阅模型,到ModelArts一键部署为在线服务的免费体验过程。 “商超商品识别”模型可以识别81类常见超市商品(包括蔬菜、水果和饮品)
用于指定预处理数据的工作线程数。随着线程数的增加,预处理的速度也会提高,但也会增加内存的使用。 per_device_train_batch_size 1 指定每个设备的训练批次大小。 gradient_accumulation_steps 8 必须修改,指定梯度累积的步数,这可以增加批次大小而不增加内存消耗。可参考表1
None 服务介绍 ModelArts产品 产品介绍 03:19 了解什么是ModelArts ModelArts自动学习 视频介绍 02:59 ModelArts自动学习简介 ModelArts CodeLab 视频介绍 04:16 ModelArts CodeLab介绍 JupyterLab