检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
优化Flink内存GC参数 操作场景 Flink是依赖内存计算,计算过程中内存不够对Flink的执行效率影响很大。可以通过监控GC(Garbage Collection),评估内存使用及剩余情况来判断内存是否变成性能瓶颈,并根据情况优化。 监控节点进程的YARN的Container
Spark Core内存调优 操作场景 Spark是内存计算框架,计算过程中内存不够对Spark的执行效率影响很大。可以通过监控GC(Garbage Collection),评估内存中RDD的大小来判断内存是否变成性能瓶颈,并根据情况优化。 监控节点进程的GC情况(在客户端的conf/spark-default
ALM-17007 Oozie进程垃圾回收(GC)时间超过阈值 告警解释 系统每60秒周期性检测Oozie进程的垃圾回收(GC)占用时间,当检测到Oozie进程的垃圾回收(GC)时间超出阈值(默认12秒)时,产生该告警。垃圾回收(GC)时间小于阈值时,告警恢复。 告警属性 告警ID
设置合理数量的存储组 设置合理数量的存储组可以带来性能的提升。既不会因为产生过多的存储文件(夹)导致频繁切换IO降低系统速度(并且会占用大量内存且出现频繁的内存-文件切换),也不会因为过少的存储文件夹(降低了并发度从而)导致写入命令阻塞。 应根据自己的数据规模和使用场景,平衡存储文件的存储组设置,以达到更好的系统性能。
时文件(例如shuffle文件是否过大)、监控Hive、HetuEngine、Spark的关键HDFS目录(不支持OBS)是否过大。对于占用存储资源(本地磁盘或者关键HDFS目录)过大的作业上报事件。 本章节内容仅适用于MRS 3.5.0及之后版本。 监控的HDFS目录请参见表1。
0-LTS及之后版本 操作场景 随着时间的推移,Hudi表中的数据越来越多,表中的老数据价值逐渐变弱并且还会占用存储空间,对这些老数据Hudi需要支持删除操作以便节约存储成本。 delete/drop partition语句直接删除历史数据 delete/drop partiti
产生告警的主机名。 对系统的影响 okerberos、oldap等端口被占用时,会导致认证失败,可能会导致作业运行失败。 controller、pms等端口被占用时,会导致进程故障,可能会影响弹性扩缩容性能。 tomcat等端口被占用时,会影响Manager页面登录、查看功能。 可能原因 随机端口范围配置被修改。
Spark支持两种方式的序列化 : Java原生序列化JavaSerializer Kryo序列化KryoSerializer 序列化对于Spark应用的性能来说,具有很大的影响。在特定的数据格式的情况下,KryoSerializer的性能可以达到JavaSerializer的10倍以上,而对于一些Int之类
配置流式读取Spark Driver执行结果 配置场景 在执行查询语句时,返回结果有可能会很大(10万数量以上),此时很容易导致JDBCServer OOM(Out of Memory)。因此,提供数据汇聚功能特性,在基本不牺牲性能的情况下尽力避免OOM。 配置描述 提供两种不同
配置流式读取Spark Driver执行结果 配置场景 在执行查询语句时,返回结果有可能会很大(10万数量以上),此时很容易导致JDBCServer OOM(Out of Memory)。因此,提供数据汇聚功能特性,在基本不牺牲性能的情况下尽力避免OOM。 配置描述 提供两种不同
Spark支持两种方式的序列化 : Java原生序列化JavaSerializer Kryo序列化KryoSerializer 序列化对于Spark应用的性能来说,具有很大的影响。在特定的数据格式的情况下,KryoSerializer的性能可以达到JavaSerializer的10倍以上,而对于一些Int之类
Spark支持两种方式的序列化 : Java原生序列化JavaSerializer Kryo序列化KryoSerializer 序列化对于Spark应用的性能来说,具有很大的影响。在特定的数据格式的情况下,KryoSerializer的性能可以达到JavaSerializer的10倍以上,而对于一些Int之类
Hive数据迁移分两部分内容: Hive的元数据信息,存储在MySQL等数据库中。MRS Hive集群的元数据会默认存储到MRS DBService组件,也可以选择RDS(MySQL)作为外置元数据库。 Hive的业务数据,存储在HDFS文件系统或OBS对象存储中。 图1 Hive数据迁移示意 方案优势
Broadcast过来的数据集合。如果不使用Broadcast,每次任务需要数据集合时,都会把数据序列化到任务里面,不但耗时,还使任务变得很大。 每个任务分片在执行中都需要同一份数据集合时,就可以把公共数据集Broadcast到每个节点,让每个节点在本地都保存一份。 大表和小表做
行的服务(比如JDBCServer),若分配给它多个Executor,可是却没有任何任务分配给它,而此时有其他的应用却资源紧张,这就造成了很大的资源浪费和资源不合理的调度。 动态资源调度就是为了解决这种场景,根据当前应用任务的负载情况,实时的增减Executor个数,从而实现动态
的服务(比如JDBCServer),如果分配给它多个Executor,可是却没有任何任务分配给它,而此时有其他的应用却资源紧张,这就造成了很大的资源浪费和资源不合理的调度。 动态资源调度就是为了解决这种场景,根据当前应用任务的负载情况,实时的增减Executor个数,从而实现动态
Broadcast过来的数据集合。如果不使用Broadcast,每次任务需要数据集合时,都会把数据序列化到任务里面,不但耗时,还使任务变得很大。 每个任务分片在执行中都需要同一份数据集合时,就可以把公共数据集Broadcast到每个节点,让每个节点在本地都保存一份。 大表和小表做
的服务(比如JDBCServer),如果分配给它多个Executor,可是却没有任何任务分配给它,而此时有其他的应用却资源紧张,这就造成了很大的资源浪费和资源不合理的调度。 动态资源调度就是为了解决这种场景,根据当前应用任务的负载情况,实时的增减Executor个数,从而实现动态
目前容量计算是基于磁盘的,类似于Linux里面的df命令。理想状态下,用户不会在同一个磁盘内配置多个data.dir,否则所有的数据都将写入一个磁盘,在性能上会有很大的影响。 因此配置如下: 例如,如果机器有如下磁盘: host-4:~ # df -h Filesystem Size Used
ClickHouse加速TTL操作调优 ClickHouse触发TTL的时候,对CPU和内存会存在较大消耗和占用。 登录FusionInsight Manager界面,选择“集群 > ClickHouse > 配置 > 全部配置 > ClickHouseServer > 自定义 >