检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
通过典型场景,用户可以快速学习和掌握HetuEngine的开发过程,并且对关键的接口函数有所了解。 场景说明 假定用户开发一个应用程序,需要对Hive数据源的A表和MPPDB数据源的B表进行join运算,则可以用HetuEngine来实现Hive数据源数据查询,流程如下: 连接HetuEngine
因为启动MapReduce任务而占用更多的集群内存和CPU资源,也可能会生成大量很小的HFile文件频繁的触发Compaction,导致查询速度急剧下降。 错误的使用put,会造成数据加载慢,当分配给RegionServer内存不足时会造成RegionServer内存溢出从而导致进程退出。
因为启动MapReduce任务而占用更多的集群内存和CPU资源,也可能会生成大量很小的HFile文件频繁的触发Compaction,导致查询速度急剧下降。 错误的使用put,会造成数据加载慢,当分配给RegionServer内存不足时会造成RegionServer内存溢出从而导致进程退出。
通过典型场景,可以快速学习和掌握Kudu的开发过程,并对关键的接口函数有所了解。 作为存储引擎,通常情况下Kudu会和计算引擎一起协同工作: 首先在计算引擎上(比如Impala)用SQL语句创建表对象; 然后通过Kudu的驱动往这个表里写数据; 在计算引擎上直接查询这个表里的数据。 在本开发程序示
Hive应用开发建议 HQL编写之隐式类型转换 查询语句使用字段的值做过滤时,不建议通过Hive自身的隐式类型转换来编写HQL。因为隐式类型转换不利于代码的阅读和移植。 建议示例: select * from default.tbl_src where id = 10001; select
PyFlink样例程序代码说明 通过Python API的方式提交Flink读写Kafka作业到Yarn上代码样例 下面列出pyflink-kafka.py的主要逻辑代码作为演示,在提交之前需要确保“file_path” 为要运行的SQL的路径,建议写全路径。 完整代码参见“flink-
“Spark输出”算子,用于配置已生成的字段输出到SparkSQL表的列。 输入与输出 输入:需要输出的字段 输出:SparkSQL表 参数说明 表1 算子参数说明 参数 含义 类型 是否必填 默认值 Spark文件存储格式 配置SparkSQL表文件的存储格式(目前支持四种格式:CSV、ORC、RC和PARQUET)。
By也同样存在数据倾斜的问题,设置hive.groupby.skewindata为true,生成的查询计划会有两个MapReduce Job,第一个Job的Map输出结果会随机的分布到Reduce中,每个Reduce做聚合操作,并输出结果,这样的处理会使相同的Group By Ke
通过典型场景,可以快速学习和掌握Kudu的开发过程,并对关键的接口函数有所了解。 开发思路 作为存储引擎,通常情况下会和计算引擎一起协同工作: 首先在计算引擎上(比如Impala)用SQL语句创建表对象; 然后通过Kudu的驱动往这个表里写数据; 于此同时可以在计算引擎上直接查询这个表里的数据。 在本开发
Sqlline接口介绍 可以直接使用sqlline.py在服务端对HBase进行SQL操作。Phoenix的sqlline接口与开源社区保持一致,请参见http://phoenix.apache.org/。 Sqlline常用语法见表1,常用函数见表2,命令行使用可以参考Phoenix命令行操作介绍章节。
gine等服务提供访问OBS的临时认证凭据的服务,只有对接OBS的场景下才需要安装Guardian组件。Guardian的典型特性包括: 提供获取访问OBS的临时认证凭据的能力。 提供访问OBS的细粒度权限控制的能力。 提供访问OBS的临时认证凭据的统一缓存刷新能力。 Guard
向后兼容的方式演进。此错误通常发生在使用向后不兼容的演进方式删除某些列如“col1”后,更新parquet文件中以旧的schema写入的列“col1”,在这种情况下,parquet尝试在传入记录中查找所有当前字段,当发现“col1”不存在时,发生上述异常。 解决这个问题的办法是使
--指定bulk_insert写入时的并行度,等于写入完成后保存的分区parquet文件数。 insert into dsrTable select * from srcTabble 开启log列裁剪,提升mor表查询效率 mor表读取的时候涉及到Log和Parquet的合并,性能不是很理想。
生新版本的Parquet文件,那旧版本的文件就不能被Clean清理,增加存储压力。 CPU与内存比例为1:4~1:8。 Compaction作业是将存量的parquet文件内的数据与新增的log中的数据进行合并,需要消耗较高的内存资源,按照之前的表设计规范以及实际流量的波动结合考
alias("word")) # 生成正在运行的word count wordCounts = words.groupBy("word").count() # 开始运行将running counts打印到控制台的查询 query = wordCounts
同时访问的数据尽量连续存储。同时读取的数据相邻存储;同时读取的数据存放在同一行;同时读取的数据存放在同一cell。 查询频繁属性放在Rowkey前面部分。Rowkey的设计在排序上必须与主要的查询条件契合。 离散度较好的属性作为RowKey组成部分。分析数据离散度特点以及查询场景,综合各种场景进行设计。
获取JDBC连接,执行HQL,输出查询的列名和结果到控制台,关闭JDBC连接。 连接字符串中的“zk.quorum”也可以使用配置文件中的配置项“spark.deploy.zookeeper.url”来代替。 在网络拥塞的情况下,您还可以设置客户端与JDBCServer连接的超时时间,可以避免客
MATERIALIZED VIEW MVNAME (mvname1,mvname2...) ORIGINALSQL query 描述 给定一条SQL查询语句,验证它是否可以被指定的物化视图重写。 示例 验证指定SQL是否能被物化视图mv.tpcds.test和mv.tpcds.t1重写。 verify materialized
Phoenix命令行操作介绍 Phoenix支持SQL的方式来操作HBase,以下简单介绍使用SQL语句建表/插入数据/查询数据/删表等操作。 前提条件 已安装HBase客户端,例如安装目录为“/opt/client”。以下操作的客户端目录只是举例,请根据实际安装目录修改。在使用客
SHOW显示数据库和表信息 本章节主要介绍ClickHouse显示数据库和表信息的SQL基本语法和使用说明。 基本语法 show databases show tables 使用示例 --查询数据库 show databases; ┌─name────┐ │ default