检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
发布数据集 企业B分别自己的csv数据文件上传到自己的计算节点上,通过“数据管理”模块创建各自的数据集,并单击“发布”。 企业B的数据集如下: 创建数据集后单击“发布”按钮即可将数据的元数据信息发布到tics空间侧,供其他合作方参考。 父主题: 外部数据共享
场景描述 某企业A在进行新客户营销时的成本过高,想要通过引入外部数据的方式提高营销的效果,降低营销成本。 因此企业A希望与某大数据厂商B展开一项合作,基于双方共有的数据进行联邦建模,使用训练出的联邦模型对新数据进行联邦预测,筛选出高价值的潜在客户,再针对这些客户进行定向营销,达成提高营销效果、降低营销成本的业务诉求。
准备数据 企业A的实时业务不需要准备数据,在发起查询时通过参数传递需要查询的用户id。 表1 企业B用户画像数据 字段名称 字段类型 描述 id string hash过后的手机号字符串 f0-f4 float 用户数据画像特征 bigdata_all.csv id,f0,f1,f2
实时隐匿查询 创建作业 审批实时隐匿查询作业 作业授权 执行作业 删除作业 父主题: 隐匿查询
统计信息管理 用于查询租户下统计信息。 空间管理 用于获取空间列表。 可信节点管理 用于获取计算节点列表。 数据集管理 用于查询空间已注册数据集列表。 联邦分析作业管理 用于查询多方安全计算作业列表。 联邦学习作业管理 用于查询联邦学习作业列表。 作业实例管理 用于查询作业的历史实例列表。
隐匿查询 概述 批量隐匿查询 实时隐匿查询
发起方、参与方各自根据合约仓库章节中下载模板的描述,下载“数据上链存证和查询合约模板(又称链代码)”并保存到本地。 发起方、参与方各自按照链代码管理章节中“安装链代码”部分的描述,上传步骤4中已保存至本地的链代码压缩包。 注意事项: “链代码名称”参数值须为“ticsrule”。
个参与者的共同样本的不同数据特征进行联邦机器学习,联合建模。 公测 创建纵向联邦学习作业 2 联盟和计算节点支持自助升级 在实际应用中,升级、回滚是一个常见的场景,TICS能够很方便的支撑联盟和计算节点升级和回滚。回滚也称为回退,即当发现升级出现问题时,让联盟和计算节点自动回滚到
配置连接器,注册数据集,任务执行,查看任务执行日志。 连接器(Connector) 连接器是可信智能计算节点内置的连接特定数据源所需的对象模板,目前支持连接MRS Hive、MySQL、RDS、DWS、ORACLE等多种连接器,并支持扩展增加新的连接器。 数据集(Data set)
执行样本分布联合统计 企业A单击“执行”并等待一段时间之后,可以在页面下方“执行结果”看到sql的运行结果。 也可以通过“作业管理 > 多方安全计算 > 历史作业 > 查看结果”查看对应的结果。 父主题: 使用TICS多方安全计算进行联合样本分布统计
保存并执行作业。单击下方的“保存并执行”按钮,即可发起执行横向联邦学习作业。 单击“历史作业”按钮,查看当前作业的执行情况。 单击“计算过程”按钮可以查看作业的具体执行计划。 单击“执行结果”按钮可以查看作业保存的模型文件路径,用于后续的评估型作业。 图4 查看作业的执行情况 图5 查看作业的具体执行计划
Hive中关于导入数据的描述。 配置安全组,操作步骤请参考如何配置安全组。 安全组配置示例 该步骤是为了确保计算节点的部署节点能够与该MRS集群通信以获取Hive数据。 一种方式是让计算节点与MRS集群的master节点处于同一个安全组。 另一个方式,是配置MRS集群的安全组策略,开放部分端口提供给计算节点。
多方安全计算是可信智能计算服务(TICS)提供的关系型数据安全共享和分析功能。 您可以创建多方安全计算作业,根据合作方已提供的数据,编写相关SQL作业并获取您所需要的分析结果,能够在作业运行的同时保护数据使用方的数据查询和搜索条件,避免因查询和搜索请求造成的数据泄露。 父主题: 服务介绍
使用TICS的隐私规则防护能力确保数据安全。 前提条件 完成数据集发布。 操作步骤 进入多方安全计算的作业执行界面,单击创建。 图1 创建作业 在作业界面中,按照示例一和示例二提供的案例和SQL语句进行作业测试。 图2 作业界面 示例一: 假设有人输入以下代码试图直接查询敏感数据。
实时隐匿查询场景 外部数据共享 父主题: 使用场景
可信联邦学习作业是可信智能计算服务提供的在保障用户数据安全的前提下,利用多方数据实现的联合建模。 安全可信。 多种训练场景。 方便与已有服务对接。 使用场景 横向联邦机器学习 横向联邦机器学习,适用于参与者的数据特征重叠较多,而样本ID重叠较少的情况,联合多个参与者的具有相同特征的多行样本进行可信联邦学习,联合建模。
准备数据 A方提供了待查询的用户ID数据,样例如下: blacklist_query.csv id 1914fd1aef9346e7a1b0a63c95aa918e 6b86b273ff34fce19d6b804eff5a3f57 66985617b4f74d14b4eceeaa25d61f5e
业,根据合作方已提供的数据,编写相关sql作业并获取您所需要的分析结果,同时能够在作业运行保护数据使用方的数据查询和搜索条件,避免因查询和搜索请求造成的数据泄露。 可信联邦学习 可信联邦学习是可信智能计算服务提供的在保障用户数据安全的前提下,利用多方数据实现的联合建模,曾经被称为联邦机器学习。
创建并运行隐私求交作业 企业A单击“作业管理 > 隐私求交 > 创建”,依次填写作业名称、选择需要求交的数据集和对应的求交列、选择算法协议及各种参数,再单击“保存并执行”即可发起一次隐私求交查询。 父主题: 隐私求交黑名单共享场景
在数据申请页面单击“我收到的”,查看供数方节点收到的申请列表。 图1 我收到的数据申请 在申请列表中选择申请状态为“待处理”,单击“查看详情”了解用数方需求。根据实际情况同意或者驳回申请。 图2 查看详情 (可选)如果同意申请,则可以创建合约,继续后续的合约流程,即用数方达成数据交换的合约。 父主题: