检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
nt开发平台。 进入“工作台 > 插件”页面。 导出插件。 单击页面右上角“导出”。 在“导出插件”页面选择工作流,单击“导出”。插件将以一个jsonl格式的文件下载至本地。 导入插件。 单击页面右上角“导入”。 在“导入”页面,单击“选择文件”选择需要导入的jsonl文件。 选择导入文件后,选择解析内容。
ent开发平台。 进入“工作台 > 应用”页面。 导出应用。 单击页面右上角“导出”。 在“导出应用”页面选择应用,单击“导出”。应用将以一个jsonl格式的文件下载至本地。 导入应用。 单击页面右上角“导入”。 在“导入”页面,单击“选择文件”选择需要导入的jsonl文件。 选择导入文件后,选择解析内容。
在左侧导航栏中选择“能力调测”,单击“文本对话”页签。 选择需要调用的服务。可从“预置服务”或“我的服务”中选择。 填写系统人设。如“你是一个AI助手”,若不填写,将使用系统默认人设。 在页面右侧配置参数,具体参数说明见表1。 表1 NLP大模型能力调测参数说明 参数 说明 搜索增强
平台。 进入“工作台 > 工作流”页面。 导出工作流。 单击页面右上角“导出”。 在“导出工作流”页面选择工作流,单击“导出”。工作流将以一个jsonl格式的文件下载至本地。 导入工作流。 单击页面右上角“导入”。 在“导入”页面,单击“选择文件”选择需要导入的jsonl文件。 选择导入文件后,选择解析内容。
点进行分类。 Pangu-Predict-Table-Reg-2.0.0 2024年12月发布的版本,支持根据已知的输入变量(特征)来预测一个连续型输出变量(目标变量)。 Pangu-Predict-Table-Anom-2.0.0 2024年12月发布的版本,支持识别数据集中不符合预期模式或行为的数据点。
体验,详见创建与管理插件、编排工作流、创建与管理知识库。 应用编排流程见表1。 表1 应用编排流程 操作步骤 说明 步骤1:创建应用 创建一个新应用。 步骤2:配置Prompt 在应用中配置大模型所需的Prompt。 步骤3:添加插件 为应用添加插件技能。 步骤4:添加工作流 为应用添加工作流技能。
大模型概念类问题 如何对盘古大模型的安全性展开评估和防护 训练智能客服系统大模型需考虑哪些方面
盘古格式:训练盘古大模型时,需要将数据集格式发布为“盘古格式”。 在盘古格式中,context和target是键值对。与默认格式不同,context是一个数组,示例如下: {"context":["你好,请介绍自己"],"target":"我是盘古大模型"} 创建文本类数据集流通任务 创建文本类数据集流通任务步骤如下:
包年/包月和按需计费模式哪个更划算 同一资源是否同时支持包年/包月和按需计费两种模式 包年/包月和按需计费模式是否支持互相切换 资源到期了如何续费
保对max_tokens进行了合理的设置。 presence_penalty 否 Float 用于调整模型对新Token的处理方式。即如果一个Token已经在之前的文本中出现过,那么模型在生成这个Token时会受到一定的惩罚。当presence_penalty的值为正数时,模型会
在视频中标注场景主题类别。每个视频片段只对应一个分类标签,分类项不再进一步细分或包含更多的层次结构。 图1 单层级分类示例-视频主题分类 多层级分类:多层级分类允许对同一视频内容进行更复杂的分类,并通过层次结构展现。通常会先从一个大类别开始,然后逐渐向下细分,直到达到所需的标注
Studio-模型实例(科学计算) 包年/包月 续订模型资产 ModelArts Studio大模型开发平台支持以包年/包月方式续订模型资产,即在当前订购的模型资产基础上延长使用时间。 续订模型资产的步骤如下: 登录ModelArts Studio大模型开发平台,单击页面右上角“订购管理”。 在“订购管理”页
配到多个工作节点上进行并行处理,每个工作节点负责处理一部分数据或执行特定的计算任务。日志也可以按照不同的工作节点(如worker-0表示第一个工作节点)进行筛选查看。 图1 获取训练日志 父主题: 训练预测大模型
钢铁行业:进行钢水温度预测,例如预测钢水温度,提高浇注和连铸的准确性和效率。 2024年12月发布的版本,支持根据已知的输入变量(特征)来预测一个连续型输出变量(目标变量)。 Pangu-Predict-Table-Anom-2.0.0 该模型属于异常检测模型,用于识别数据集中的异常
的octave指的是噪音的频率,在生成Perlin噪音时,可以将多个不同频率的噪音叠加在一起,以增加噪音的复杂度和细节。每个频率的噪音称为一个octave,而叠加的octave数越多,噪音的复杂度也就越高。 ensemble_noise_perlin_y 用于选择集合预报的Perlin加噪y纬度方向的尺度。
Token认证 Content-Type application/json X-Auth-Token Token值,参考《API参考》文档“如何调用REST API > 认证鉴权 > Token认证”章节获取Token。 AppCode认证 Content-Type application/json
其中,domain_id、domain_name、project_id、project_name获取方式如下: 登录管理控制台。 鼠标移动到右上角已登录的用户名上,在下拉列表中选择“我的凭证”。 在“我的凭证”页面,可以获取domain_id、domain_name、project_id、project_name,如图3。
学习率衰减比率。 Agent微调 在训练Agent所需的NLP大模型时,可以开启此参数。通过调整训练数据中的Prompt,引导模型在特定领域或任务上生成更符合预期的回答。 在使用此参数前,请先联系盘古客服,调整Prompt和训练数据。 模型保存步数 每训练一定数量的步骤(或批次),模型的
的octave指的是噪音的频率,在生成Perlin噪音时,可以将多个不同频率的噪音叠加在一起,以增加噪音的复杂度和细节。每个频率的噪音称为一个octave,而叠加的octave数越多,噪音的复杂度也就越高。 取值范围:[1, 10)。 ensemble_noise_perlin_x
且符合语境的文本。 通过对海量数据的深入学习和分析,盘古大模型能够捕捉语言中的细微差别和复杂模式,无论是在词汇使用、语法结构,还是语义理解上,都能达到令人满意的精度。此外,模型具备自我学习和不断进化的能力,随着新数据的持续输入,其性能和适应性不断提升,确保在多变的语言环境中始终保持领先地位。