检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
推理精度测试 本章节介绍如何使用opencompass工具开展语言模型的推理精度测试,数据集是ceval_gen、mmlu_gen、math_gen、gsm8k_gen、humaneval_gen。 约束限制 确保容器可以访问公网。 当前的精度测试仅适用于语言模型精度验证,不适用
Open-Sora1.2基于DevServer适配PyTorch NPU训练推理指导(6.3.910) 本文档主要介绍如何在ModelArts Lite DevServer上,使用PyTorch_npu+华为自研Ascend Snt9B硬件,完成Open-Sora 1.2 训练和推理。
推理精度测试 本章节介绍两个精度测评工具。如何使用opencompass工具开展语言模型的推理精度测试,数据集是ceval_gen、mmlu_gen、math_gen、gsm8k_gen、humaneval_gen;以及使用lm-eval工具开展语言模型的推理精度测试,数据集包含
具体案例直接实操,请参考《主流开源大模型基于DevServer适配PyTorch NPU训练指导》。该案例以ChatGLM-6B为例,介绍如何将模型迁移至昇腾设备上训练、模型精度对齐以及性能调优。 迁移环境准备 本文以弹性裸金属作为开发环境。弹性裸金属支持深度自定义环境安装,可以
文生图场景,能够帮助用户生成图像。SDXL LoRA是指在已经训练好的SDXL模型基础上,使用新的数据集进行LoRA微调。 本文档主要介绍如何在ModelArts Standard上,利用训练框架PyTorch_npu+华为自研Ascend Snt9B硬件,完成SDXL LoRA训练。
SD1.5&SDXL ComfyUI、WebUI、Diffusers套件适配PyTorch NPU的推理指导(6.3.912) 本文档主要介绍如何在DevServer环境中部署Stable Diffusion模型对应SD1.5和SDXL的ComfyUI、Webui和Diffusers框架,使用NPU卡进行推理。
使用ModelArts PyCharm插件调试训练ResNet50图像分类模型 本案例介绍如何将本地开发好的MindSpore模型代码,通过PyCharm ToolKit连接到ModelArts进行云上调试和训练。 开始使用样例前,请仔细阅读准备工作罗列的要求,提前完成准备工作。本案例的步骤如下所示:
准备训练模型适用的容器镜像。 预训练 预训练 介绍如何进行预训练,包括训练数据处理、超参配置、训练任务、性能查看。 微调训练 SFT全参微调 介绍如何进行SFT全参微调、超参配置、训练任务、性能查看。 LoRA微调训练 介绍如何进行LoRA微调、超参配置、训练任务、性能查看。 父主题:
准备训练模型适用的容器镜像。 预训练 预训练 介绍如何进行预训练,包括训练数据处理、超参配置、训练任务、性能查看。 微调训练 SFT全参微调 介绍如何进行SFT全参微调、超参配置、训练任务、性能查看。 LoRA微调训练 介绍如何进行LoRA微调、超参配置、训练任务、性能查看。 父主题:
Turbo中的数据执行编辑操作。 预训练 预训练 介绍如何进行预训练,包括训练数据处理、超参配置、创建训练任务及性能查看。 微调训练 SFT全参微调 介绍如何进行SFT全参微调,包括训练数据处理、超参配置、创建训练任务及性能查看。 LoRA微调训练 介绍如何进行LoRA微调训练,包括训练数据处理、超参配置、创建训练任务及性能查看。
约束限制 仅使用新版专属资源池训练时才支持设置训练作业优先级。公共资源池和旧版专属资源池均不支持设置训练作业优先级。 作业优先级取值为1~3,默认优先级为1,最高优先级为3。默认用户权限可选择优先级1和2,配置了“设置作业为高优先级权限”的用户可选择优先级1~3。 如何设置训练作业优先级
G.0201”:“Request entity too large”。请减少预测请求内容后重试。 当使用API调用地址预测时,请求体的大小限制是12MB,超过12MB时,请求会被拦截。 使用ModelArts console的预测页签进行的预测,由于console的网络链路的不同,要求请求体的大小不超过8MB。
service会优先读取网卡配置文件中的IP设置为主机IP, 此时无论DH Cient是否关闭,服务器都可以获取分配IP。 当服务器没有网卡配置文件时,DH Client开启,此时服务器会分配私有IP。如果关闭DH Client,则服务器无法获取私有IP。 图2 查看NetworkManager配置
Turbo中的数据执行编辑操作。 预训练 预训练 介绍如何进行预训练,包括训练数据处理、超参配置、创建训练任务及性能查看。 微调训练 SFT全参微调 介绍如何进行SFT全参微调,包括训练数据处理、超参配置、创建训练任务及性能查看。 LoRA微调训练 介绍如何进行LoRA微调训练,包括训练数据处理、超参配置、创建训练任务及性能查看。
详情请参见如何上传超过5GB的大对象。 权重校验 当“权重设置与词表”选择“自定义权重”时,需要选择是否开启权重文件校验。默认是开启的。 当开启权重校验时,平台会对OBS中的权重文件进行校验,确认其是否满足规范。权限校验常见的失败情况及其处理建议请参见权重校验。 当关闭权重校验时
分离部署推理服务 本章节介绍如何使用vLLM 0.6.0框架部署并启动推理服务。 什么是分离部署 大模型推理是自回归的过程,有以下两阶段: Prefill阶段(全量推理) 将用户请求的prompt传入大模型,进行计算,中间结果写入KVCache并推出第1个token,属于计算密集型。
分离部署推理服务 本章节介绍如何使用vLLM 0.5.0框架部署并启动推理服务。 什么是分离部署 大模型推理是自回归的过程,有以下两阶段: Prefill阶段(全量推理) 将用户请求的prompt传入大模型,进行计算,中间结果写入KVCache并推出第1个token,属于计算密集型。
分离部署推理服务 本章节介绍如何使用vLLM 0.6.0框架部署并启动推理服务。 什么是分离部署 大模型推理是自回归的过程,有以下两阶段: Prefill阶段(全量推理) 将用户请求的prompt传入大模型,进行计算,中间结果写入KVCache并推出第1个token,属于计算密集型。
zip的llm_tools/llm_evaluation目录下。工具相关介绍在benchmark代码目录。 约束限制 当前版本仅支持语言+图片多模态性能测试。 静态benchmark验证 本章节介绍如何进行静态benchmark验证。 已经上传benchmark验证脚本到推理容器中。如果在步骤三:
W8A8量化 什么是W8A8量化 W8A8量化方案能降低模型显存以及需要部署的卡数。也能同时降低首token时延和增量推理时延。 约束限制 支持SmoothQuant(W8A8)量化的模型列表请参见支持的模型列表。 激活量化支持动态per-token和静态per-tensor,支持非对称量化。