检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
应用 功能介绍 通过调用创建好的应用API,输入问题,将得到应用执行的结果。 URI 获取URI方式请参见请求URI。 POST /v1/{project_id}/agent-run/agents/{agent_id}/conversations/{conversation_id}
本信息页面,单击右上角“命中测试”。 在文本框中输入问题,单击“命中测试”,页面下方将展示多条匹配的内容,并按照匹配分值降序排列。 用户可以根据分值与匹配到的信息数量来评估当前知识库是否满足需求。 单击“查看历史”,可以查看用户输入的历史问题。 父主题: 创建与管理知识库
、知识库等信息,使得大模型能够自主规划和调用工具。 优点:零代码开发,对话过程智能化。 缺点:大模型在面对复杂的、长链条的流程时可能会受到输入长度限制,难以有效处理较为复杂的工作流。 流程型Agent:以工作流为任务执行核心,用户可以通过在画布上“拖拽”节点来搭建任务流程。支持编
存储类型。 data Array of ObsStorageDto objects 输入数据的OBS信息。 表4 ObsStorageDto 参数 参数类型 描述 bucket String 输入数据的OBS桶名称。 path String 初始场数据的存放路径。 表5 TaskOutputDto
训练参数设置:若数据质量存在问题,且因训练参数设置的不合理而导致过拟合,该现象会更加明显。请检查训练参数中的 “训练轮次”或“学习率”等参数的设置,适当降低这些参数的值,降低过拟合的风险。 推理参数设置:请检查推理参数中的“温度”或“核采样”等参数的设置,适当减小其中一个参数的值,可以提升模型回答的确定性,避免生成异常内容。
求选择最合适的模型进行开发和应用。 模型支持区域 模型名称 说明 西南-贵阳一 Pangu-Predict-Table-Cla-2.0.0 2024年12月发布的版本,支持分析历史数据中的特征与类别的关系,学习出一种映射规则或函数,然后应用这个规则对未来未知的数据点进行分类。 P
已部署服务:选择部署至ModelArts Studio平台的模型进行评测。 外部服务:通过API的方式接入外部模型进行评测。选择外部服务时,需要填写外部模型的接口名称、接口地址、请求体、响应体等信息。 请求体支持openai、tgi、自定义三种格式。openai格式即是由OpenAI公司开发并标准化的一种大模
存储类型。 data Array of ObsStorageDto objects 输入数据的OBS信息。 表4 ObsStorageDto 参数 参数类型 描述 bucket String 输入数据的OBS桶名称。 path String 初始场数据的存放路径。 表5 TaskOutputDto
文。 图4 多场景测试-复杂对话场景 优化Prompt设计:从prompt设计维度来看,可以通过以下方式进行优化: 清晰的输入指令: 在翻译场景中,明确的输入指令将提升工作流的运行效果。例如:prompt可以设计为:请将以下中文句子翻译成英文:“我喜欢吃苹果”。通过这种明确的指令,更容易生成准确的翻译结果。
Studio大模型开发平台,进入所需空间。 在左侧导航栏中选择“Agent 开发 > 提示词工程 > 提示词开发”,单击界面右上角“创建工程”。 输入工程名称、描述,选择行业、标签后。单击“确定”完成工程创建。 图1 创建提示词工程 父主题: 撰写提示词
Studio大模型开发平台,在“我的空间”模块,单击进入所需空间。 在左侧导航栏中选择“模型开发 > 模型训练”,单击模型名称进入任务详情页。 单击进入“训练结果”页签,单击“发布”。 图1 训练结果页面 填写资产名称、描述,选择对应的可见性,单击“确定”发布模型。 发布后的模型会作为模型资产同步显示在“空间资产
应用会根据盘古NLP大模型对提示词的理解,来选择使用插件、工作流或知识库,响应用户问题。因此,一个好的提示词可以让模型更好地理解并执行任务,应用效果与提示词息息相关。 配置Prompt Builder步骤如下: 在“Prompt builder”模块,需要在输入框中填写Prompt提示词。 可依据模板填
中期天气要素预测模型、降水模型的类型 模型名称 使用场景 说明 Pangu-AI4S-Weather_Precip-20241030 用于降水预测。 2024年10月发布的版本,支持在线推理、能力调测特性,支持1个实例部署推理。 Pangu-AI4S-Weather-Precip_6h-3.0.0 用于降水预测
Studio大模型开发平台。 获取模型请求URI。 若调用部署后的模型,可在左侧导航栏中选择“模型开发 > 模型部署”,在“我的服务”页签,模型部署列表单击模型名称,在“详情”页签中,可获取模型的部署ID。 图1 部署后的模型调用路径 若调用预置模型,可在左侧导航栏中选择“模型开发 > 模型部署”,在
以包含您传递到模型的指令或问题等信息,也可以包含其他种类的信息,如上下文、输入或示例等。您可以通过这些元素来更好地指导模型,并因此获得更好的结果。提示词主要包含以下要素: 指令:希望模型执行的特定任务或指令,如总结、提取、生成等。 上下文:包含外部信息或额外的上下文信息,引导语言模型更好地响应。
支持1个实例部署推理。 Pangu-AI4S-Weather_Precip-20241030 2024年10月发布的版本,用于降水预测,支持1个实例部署推理。 Pangu-AI4S-Weather-Precip_6h-3.0.0 2024年12月发布的版本,相较于10月发布的版本
Studio大模型开发平台,在“我的空间”模块,单击进入所需空间。 在左侧导航栏中选择“模型开发 > 模型训练”,单击模型名称进入任务详情页。 单击进入“训练结果”页签,单击“发布”。 图1 训练结果页面 填写资产名称、描述,选择对应的可见性,单击“确定”发布模型。 发布后的模型会作为模型资产同步显示在“空间资产
Studio大模型开发平台,在“我的空间”模块,单击进入所需空间。 在左侧导航栏中选择“模型开发 > 模型训练”,单击模型名称进入任务详情页。 单击进入“训练结果”页签,单击“发布”。 图1 训练结果页面 填写资产名称、描述,选择对应的可见性,单击“确定”发布模型。 发布后的模型会作为模型资产同步显示在“空间资产
用于存放模型推理结果的OBS路径。 输入数据 支持选择用于存放作为初始场数据的文件路径。 预报天数 支持选择以起报时间点为开始,对天气要素或降水进行预报的天数,范围为1~14天。 起报时间 支持选择多个起报时间作为推理作业的开始时间,每个起报时间需为输入数据中存在的时间点。 表面变量
大模型的计量单位token指的是什么 令牌(Token)是指模型处理和生成文本的基本单位。token可以是词或者字符的片段。模型的输入和输出的文本都会被转换成token,然后根据模型的概率分布进行采样或计算。 例如,在英文中,有些组合单词会根据语义拆分,如overweight会被设计为2个token:“o