检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
ouses/{data_warehouse_id}/data octopus:dataWarehouse:list √ √ 父主题: 权限和授权项
0/{project_id}/common/datasets/{dataset_id} octopus:dataset:delete √ √ 父主题: 权限和授权项
/image-registry/image-repos/{id} octopus:imageRepo:delete √ √ 父主题: 权限和授权项
{dataset_id}/versions/{version_id} octopus:dataset:delete √ √ 父主题: 权限和授权项
0/{project_id}/common/clusters/resource-specs octopus:resourceManager:get √ √ 父主题: 权限和授权项
权限对云服务进行操作。 权限根据授权的精细程度,分为角色和策略。角色以服务为粒度,是IAM最初提供的一种根据用户的工作职能定义权限的粗粒度授权机制。策略以API接口为粒度进行权限拆分,授权更加精细,可以精确到某个操作、资源和条件,能够满足企业对权限最小化的安全管控要求。 如果您要
训练模型 训练算法 创建训练作业前需要先选择算法,可以使用Octopus内置的算法,也可以自定义算法。 训练算法 模型评测 在机器学习中,通常需要使用一定的方法和标准,来评测一个模型的预测精确度,用于衡量一个模型及其标注结果的可信度。自动驾驶领域的模型多用于目标检测,如识别并标注出图像中车辆、行人、可行区域等对象。
n/warehouses/custom-attributes octopus:dataWarehouse:list √ √ 父主题: 权限和授权项
完全正相关。值为0时,表示变量间独立。值为-1时,表示变量完全负相关),并根据参数分布和相关系数进行联合概率分布采样。而离散型参数根据给定的取值列表进行随机采样。 重要型采样 重要性采样是在优化目标边界附近进行采样,利用上一次泛化场景仿真后得到的评测分数进行训练拟合,找到边界后不断在边界附近进行采样。
全正相关。值为0时,表示变量间独立。值为-1时,表示变量完全负相关。),并根据参数分布和相关系数进行联合概率分布采样。而离散型参数根据给定的取值列表进行随机采样。 重要型采样 重要性采样是在优化目标边界附近进行采样,利用上一次泛化场景仿真后得到的评测分数进行训练拟合,找到边界后不断在边界附近进行采样。
目标追踪3D Octopus 目录 标注文件目录结构 +--- 1611801018801 | +--- 1611801018801.json | +--- 1611801018801.pcd +--- 1611801024401 | +--- 1611801024401
目标追踪2D Octopus 目录 标注文件目录结构 +--- 1599625710056 | +--- 1599625710056.jpg | +--- 1599625710056.json +--- 1599625740054 | +--- 1599625740054
目标检测3D Octopus 目录 标注文件目录结构 +--- 1611801018801 | +--- 1611801018801.json | +--- 1611801018801.pcd +--- 1611801024401 | +--- 1611801024401
目标检测2D Octopus 目录 标注文件目录结构 +--- 1599625710056 | +--- 1599625710056.jpg | +--- 1599625710056.json +--- 1599625740054 | +--- 1599625740054
环境变量:配置算子的环境变量。允许添加的环境变量个数不超过10个。 Key:只能由英文、数字、和特殊符号(,-_)组成,且需要以字母开头 。长度不超过64个字符。 Value:只能由英文、数字和特殊符号(\/,.[]-_)组成 。长度不超过64个字符。 数据类型:选择“数据包”。 选择数据:选择需要操作的数据包中的数据。
junction 简述:地图场景为交叉口。lead_vehicle和主车Ego一前一后分别以LeadVehicle_TargetSpeed_Ve0和Ego_TargetSpeed_Ve0的初始速度向交叉口行驶,Ego设定了目标在右转车道上的目标点Target_position,仿
3D预标注 3D预标注当前支持目标检测和目标分割两种标注功能。支持的3D预标注类别如下: 目标检测:行人、自行车、摩托车、卡车、公交车、小汽车。 目标分割:Pedestrian(行人)、Bicycle(自行车)、Motorcycle(摩托车)、Truck(卡车)、Bus(公交车)
服务。2D预标注当前支持多种预标注功能: 目标检测:主要用于鱼眼图片的预标注。 语义分割(混合):支持鱼眼图片和普通图片的预标注。 车道线检测:能够快速标注车道线的位置和类别。 2D预标注支持的标注类别 目标检测: 可行驶区域、车道线、车位线、路沿、地面标识、减速带、消防栓、柱子
straight 简述:地图场景为直道。lead_vehicle和主车Ego在主道上分别以40kph和Ego_InitSpeed_Ve0的初始速度一前一后行驶,Ego设定了目标在主道右2车道上的目标点Target_position,同时激活Ego控制器(控制器会影响Ego去往Ta
split 简述:地图场景为匝道分流。lead_vehicle和主车Ego在主道的同一车道上分别以35kph和Ego_InitSpeed_Ve0的初始速度一前一后行驶,Ego设定了目标在匝道上的目标点Target_position,仿真开始后激活Ego控制器(控制器会影响Ego去