检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
的均匀分布(高斯或者随机分布)。其中 nin 是该神经元的输入数目。 优化器类型 grad:梯度下降算法 学习率:优化算法的参数,决定优化器在最优方向上前进步长的参数。默认0.001。 adam:自适应矩估计算法 结合AdaGrad和RMSProp两种优化算法的优点,对梯度的一阶矩估计(First Moment
Optimizer 参数 是否必选 参数类型 描述 type 否 String 优化器类型。 learning_rate 否 Double 学习率。 initial_accumulator_value 否 Double 初始梯度累加和。 最小值:0 最大值:1 lambda1 否 Double L1正则项系数。
的均匀分布(高斯或者随机分布)。其中 nin 是该神经元的输入数目。 优化器类型 grad:梯度下降算法 学习率:优化算法的参数,决定优化器在最优方向上前进步长的参数。默认0.001。 adam:自适应矩估计算法 结合AdaGrad和RMSProp两种优化算法的优点,对梯度的一阶矩估计(First Moment
默认“8核|16GiB” 时间间隔10min 优化策略相关参数 优化器类型:ftrl。适用于处理超大规模数据的,含大量稀疏特征的在线学习的常见优化算法 学习率:优化算法的参数,决定优化器在最优方向上前进步长的参数。默认0.1。 初始梯度累加和:梯度累加和用来调整学习步长。默认0.1。 L1
Optimizer 参数 是否必选 参数类型 描述 type 否 String 优化器类型。 learning_rate 否 Double 学习率。 initial_accumulator_value 否 Double 初始梯度累加和。 最小值:0 最大值:1 lambda1 否 Double L1正则项系数。
够达到更高的精度,但也更容易出现过拟合。FFM算法参数请参见域感知因子分解机。 深度网络因子分解机,结合了因子分解机和深度神经网络对于特征表达的学习,同时学习高阶和低阶特征组合,从而达到准确地特征组合学习,进行精准推荐。DEEPFM算法参数请参见深度网络因子分解机。 核函数特征交
optimize_parameters 参数说明 参数名称 是否必选 参数类型 说明 type 是 String 优化器类型。现仅提供一种字段。 ftrl:指定为使用ftrl优化器。 initial_accumulator_value 是 Double 用来动态调整学习步长。取值范围(0
Optimizer 参数 是否必选 参数类型 描述 type 否 String 优化器类型。 learning_rate 否 Double 学习率。 initial_accumulator_value 否 Double 初始梯度累加和。 最小值:0 最大值:1 lambda1 否 Double L1正则项系数。
梯度下降(grad) 学习率(learning_rate) 是 Double 决定优化器在优化方向上前进步长的参数。取值范围(0,1],默认值为0.001。 自适应梯度(adagrad) 初始梯度累加和 (initial_accumulator_value) 是 Double 用来动态调整学习步长。取值范围(0
Optimizer 参数 是否必选 参数类型 描述 type 否 String 优化器类型。 learning_rate 否 Double 学习率。 initial_accumulator_value 否 Double 初始梯度累加和。 最小值:0 最大值:1 lambda1 否 Double L1正则项系数。
Optimizer 参数 是否必选 参数类型 描述 type 否 String 优化器类型。 learning_rate 否 Double 学习率。 initial_accumulator_value 否 Double 初始梯度累加和。 最小值:0 最大值:1 lambda1 否 Double L1正则项系数。
Optimizer 参数 是否必选 参数类型 描述 type 否 String 优化器类型。 learning_rate 否 Double 学习率。 initial_accumulator_value 否 Double 初始梯度累加和。 最小值:0 最大值:1 lambda1 否 Double L1正则项系数。
- 选择离线计算、实时计算、排序模型训练规格和在线并发数。 个性化配置 匹配特征对 匹配用户和物品特征,以便于筛选出该用户相关联的物品进行推荐。 用户特征名:从下拉框中选择目标用户特征用于和物品特征进行匹配。 物品特征名:从下拉框中选择目标物品特征用于匹配用户特征,更好的做出推荐。
上传设置的黑名单列表。 场景规格 离线计算规格 可选择“4CU”、“8CU”、“16CU”和“32CU”四种规格。其中,CU代表CPU核数。 实时计算规格 可选择“2CU”、“4CU”、“8CU”和“16CU”四种规格。其中,CU代表CPU核数。 排序模型训练规格 可选择“GPU-P
Optimizer 参数 是否必选 参数类型 描述 type 否 String 优化器类型。 learning_rate 否 Double 学习率。 initial_accumulator_value 否 Double 初始梯度累加和。 最小值:0 最大值:1 lambda1 否 Double L1正则项系数。
Optimizer 参数 参数类型 描述 type String 优化器类型。 learning_rate Double 学习率。 initial_accumulator_value Double 初始梯度累加和。 最小值:0 最大值:1 lambda1 Double L1正则项系数。
如购买,收藏,内容评论或分享),并对这些喜好进行度量和打分。根据不同用户对相同物品的态度和偏好程度计算用户之间的关系。在有相同喜好的用户间进行物品推荐。 例如,A、B两个用户都购买了abc三本图书,并且给出了5星的好评。则A和B属于同一类用户。可以将A看过的图书d也推荐给用户B。
在“创建召回策略”页面,填写召回策略“名称”、“场景”和“描述”。 召回策略名称:请以“Retrieval-”开始,只能由字母、数字、中划线和下划线组成,并且长度小于64个字符。 “场景”信息可选择您在全局配置页面创建的场景。 设置计算引擎和信息,指定“服务名”、“集群名称”、“任务配置地址”、“资源规格”等信息。
Optimizer 参数 参数类型 描述 type String 优化器类型。 learning_rate Double 学习率。 initial_accumulator_value Double 初始梯度累加和。 最小值:0 最大值:1 lambda1 Double L1正则项系数。
Optimizer 参数 参数类型 描述 type String 优化器类型。 learning_rate Double 学习率。 initial_accumulator_value Double 初始梯度累加和。 最小值:0 最大值:1 lambda1 Double L1正则项系数。