检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
Spark应用执行过程中,日志中一直打印getApplicationReport异常且应用较长时间不退出 问题 Spark应用执行过程中,当driver连接RM失败时,会报下面的错误,且较长时间不退出。 16/04/23 15:31:44 INFO RetryInvocationHandler:
duce任务失败。 回答 正常情况下 ,当一个application的单个task的attempt连续在一个节点上失败3次,那么该application的AppMaster就会将该节点加入黑名单,之后AppMaster就会通知调度器不要继续调度task到该节点,从而避免任务失败。
运行Spark Streaming任务,然后使用yarn application -kill applicationID命令停止任务,为什么Driver进程不能退出? 回答 使用yarn application -kill applicationID命令后Spark只会停掉任务对应的
Streaming的cluster模式,在数据处理过程中终止ApplicationManager,应用失败 问题 Structured Streaming的cluster模式,在数据处理过程中终止ApplicationManager,执行应用时显示如下异常。 2017-05-09 20:46:02
Streaming的cluster模式,在数据处理过程中终止ApplicationManager,应用失败 问题 Structured Streaming的cluster模式,在数据处理过程中终止ApplicationManager,执行应用时显示如下异常。 2017-05-09 20:46:02
Spark应用执行过程中,日志中一直打印getApplicationReport异常且应用较长时间不退出 问题 Spark应用执行过程中,当driver连接RM失败时,会报下面的错误,且较长时间不退出。 16/04/23 15:31:44 INFO RetryInvocationHandler:
Streaming的cluster模式,在数据处理过程中终止ApplicationManager,应用失败 问题 Structured Streaming的cluster模式,在数据处理过程中终止ApplicationManager,执行应用时显示如下异常。 2017-05-09 20:46:02
理解YARN-Client和YARN-Cluster深层次的区别之前先清楚一个概念:Application Master。 在YARN中,每个Application实例都有一个ApplicationMaster进程,它是Application启动的第一个容器。它负责和ResourceManage
YARN模式下,有Driver、ApplicationMaster、Executor三种进程。在任务调度和运行的过程中,Driver和Executor承担了很大的责任,而ApplicationMaster主要负责container的启停。 因而Driver和Executor的参数配置对spark应用的执行
Streaming的cluster模式,在数据处理过程中终止ApplicationManager,应用失败 问题 Structured Streaming的cluster模式,在数据处理过程中终止ApplicationManager,执行应用时显示如下异常。 2017-05-09 20:46:02
s认证,则无需执行此命令。 kinit MRS集群用户 执行以下命令获取指定任务的日志信息。 yarn logs -applicationId 待查看作业的application_ID 父主题: 作业管理类
Kafka应用开发规则 调用Kafka API(AdminZkClient.createTopic)创建Topic 对于Java开发语言,正确示例: import kafka.zk.AdminZkClient; import kafka.zk.KafkaZkClient; import
日志: 获取application的完整日志:yarn logs --applicationId <appId> -out <outputDir> 例如:yarn logs --applicationId application_1574856994802_0016 -out /opt/test
数据源持续不断地发送随机文本给文本拆分逻辑,如“apple orange apple”。 单词拆分逻辑将数据源发送的每条文本按空格进行拆分,如“apple”,“orange”,“apple”,随后将每个单词逐一发给单词统计逻辑。 单词统计逻辑每收到一个单词就进行加一操作,并将实时结果打印输出,如: apple:1 orange:1
数据源持续不断地发送随机文本给文本拆分逻辑,如“apple orange apple”。 单词拆分逻辑将数据源发送的每条文本按空格进行拆分,如“apple”,“orange”,“apple”,随后将每个单词逐一发给单词统计逻辑。 单词统计逻辑每收到一个单词就进行加一操作,并将实时结果打印输出,如: apple:1 orange:1
Yarn模式下,有Driver、ApplicationMaster、Executor三种进程。在任务调度和运行的过程中,Driver和Executor承担了很大的责任,而ApplicationMaster主要负责container的启停。 因而Driver和Executor的参数配置对Spark应用的执行
Yarn模式下,有Driver、ApplicationMaster、Executor三种进程。在任务调度和运行的过程中,Driver和Executor承担了很大的责任,而ApplicationMaster主要负责container的启停。 因而Driver和Executor的参数配置对Spark应用的执行
网络连接超时导致FetchFailedException 问题 在380节点的大集群上,运行29T数据量的HiBench测试套中ScalaSort测试用例,使用以下关键配置(--executor-cores 4)出现如下异常: org.apache.spark.shuffle.F
经验总结 使用mapPartitions,按每个分区计算结果 如果每条记录的开销太大,例 rdd.map{x=>conn=getDBConn;conn.write(x.toString);conn.close} 则可以使用MapPartitions,按每个分区计算结果,如 rdd
网络连接超时导致FetchFailedException 问题 在380节点的大集群上,运行29T数据量的HiBench测试套中ScalaSort测试用例,使用以下关键配置(--executor-cores 4)出现如下异常: org.apache.spark.shuffle.F