检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
"在贵州黔东南苗族侗族自治州台江县革一镇乡下,有一座两层的小木屋,和这里的大部分木质吊脚楼一样,小木屋依山而建。但这座木屋又很“特别”,它有一个“山东哥哥助学工作站”的名字。这座木屋,凝聚了“山东哥哥”与贵州山区儿童之间的情谊,也见证了一位名叫隋刚的淄博“80后”小伙18年来的坚守。" } 成功响应示例 {
算子作业输出的数据,物品属性的名称来自于公共配置的全局特征信息文件。如过滤产品颜色为红色且产品品牌为华为的物品。 排序方式 “点击率预估” 特征工程:排序数据来源于排序算子作业产生的候选集。单击“选择”获取排序策略的任务别名和UUID。 模型文件路径:排序策略生成的模型存储路径。
RES+媒资应用场景 场景描述 媒资推荐场景中,通常对实时性要求比较高,用户产生的行为需要得到即时的反馈,同时结合用户的长期兴趣和短期兴趣进行个性化推荐。 RES提供一站式媒资推荐解决方案,支持针对行为数据实时生成用户的兴趣标签,提供离线、近线、在线三层计算,完成千人千面的个性化媒资推荐。
序相关得分的权重值。 融合方式:当同时选择点击率预估和综合排序进行重排序时,汇总分数时的统计方式。根据数值属性的大小顺序(ORDER)或者绝对值进行权重累加(ABS)统计。 高级类型选项 打散 打散是指推荐的结果集中根据客体的选择的字符串类型的属性进行打散,避免推荐结果集过于集中,增加推荐结果的新颖性。
增加用户特征。单击特征后方的删除不需要的用户特征。 物品特征 列表中展示抽取的物品特征和参数类型,此特征会额外应用于所选字段的功能。您可以根据业务需求单击增加物品特征。单击特征后方的删除不需要的物品特征。 您可以从“应用于”右侧的下拉选项中设置该数据的使用维度是“兴趣属性”或者“关键词提取”。其中:
置调度的时间间隔。 基于用户的协同过滤推荐 基于用户的协同过滤推荐采用经典算法基于用户的协同过滤(UserCF)进行召回。基于用户的协同过滤算法是通过用户的历史行为数据发现用户对物品的喜欢(如购买,收藏,内容评论或分享),并对这些喜好进行度量和打分。根据不同用户对相同物品的态度和
UserCF算法生成的用户-物品列表候选集。 基于交替最小二乘的矩阵分解推荐 基于交替最小二乘的矩阵分解推荐:基于用户-物品的行为信息作为原始矩阵,利用ALS优化算法对原始矩阵进行矩阵分解,分解之后的用户隐向量矩阵和物品隐向量矩阵可以用来生成预估的新的用户-物品评分矩阵,提取出评分最高的若干个物品作为召回结果。
智能场景简介 针对对应的场景,由RES根据场景类型预置好对应的智能算法,为匹配的场景提供智能推荐服务。 智能场景功能说明 表1 功能说明 功能 说明 详细指导 猜你喜欢 推荐系统结合用户实时行为,推送更具针对性的内容,实现“千人千面”。 创建智能场景 关联推荐 基于大规模机器学习算法
在购物车场景,使用的召回候选集来自于离线计算基于物品的协同过滤生成的候选集,而为了尽可能保证推荐的匹配度,要求推荐出来的物品尽可能的与用户性别、体质和年龄等属性吻合,所以考虑基于用户性别、体质和年龄等属性用标签索引得到的满足条件物品列表item1, 对离线生成的items2进行如
过滤出用户发生过某行为的物品,并保存在此表中。例如,过滤出用户看过的物品,并存储在此表中。指定集群名称和表名用于存储更新后的用户画像。 不涉及。 基于用户的标签搜索候选集 基于用户的标签搜索候选集可以持续为用户召回新的候选集,召回频率可达秒级。以DIS中的实时行为日志为数据源,分析用户喜好,并以此为依据为用户召回候选集。此任务包含两种召回方式:
预测接口(文本标签) 分词模型 命名实体识别模型 父主题: 在线服务API
推荐系统提供了重新执行作业的API,用来将任务以相同的配置重新执行一次,实现对离线任务生成结果的更新。以固定的周期定时调用此API,可保持结果处于一个较新的状态,以获得更好的推荐结果。 以上功能,我们也可以使用数据治理中心 DataArts Studio,通过拖拽的方式完成配置。具体操作步骤如下:
场景名称,1-64位的字母、数字、下划线、中划线组合。 最小长度:1 最大长度:64 specs_config 是 SpecsConfig object 计算规格。 type 是 String 场景类型: UI,基于用户推荐物品 UU,基于用户推荐用户 II,基于物品推荐物品 IU,基于物品推荐用户
推荐系统提供了查询作业详情API接口,可返回作业详情。返回体中的作业状态字段“jobs.job_status”表示了当前任务的状态。 重新执行作业的API用来将任务以相同的配置重新执行一次。 通过查询作业详情API和重新执行作业的API可完成对任务状态的监控,并且可以根据任务状态决定是否需要重新执行任务。
场景名称,1-64位的字母、数字、下划线、中划线组合。 最小长度:1 最大长度:64 specs_config 是 SpecsConfig object 计算规格。 type 是 String 场景类型: UI,基于用户推荐物品 UU,基于用户推荐用户 II,基于物品推荐物品 IU,基于物品推荐用户
数值稳定常量:为保证数值稳定而设置的一个微小常量。默认1e-8。 adagrad:自适应梯度算法 对每个不同的参数调整不同的学习率,对频繁变化的参数以更小的步长进行更新,而稀疏的参数以更大的步长进行更新。 学习率:优化算法的参数,决定优化器在最优方向上前进步长的参数。默认0.001。 初
1]之间,是机器学习领域里常用的二分类算法。LR算法参数请参见逻辑斯蒂回归。 因子分解机算法是一种基于矩阵分解的机器学习算法,能够自动进行二阶特征组合、学习特征之间的关系,无需人工经验干预,同时能够解决组合特征稀疏的问题。FM算法参数请参见因子分解机。 域感知因子分解机是因子分解机的改进版本,因子
什么是RES? 推荐系统(Recommender System,简称RES)基于华为大数据和人工智能技术,提供推荐平台和算法服务,并帮助企业构建个性化推荐应用,助力提升网站/APP的点击率、留存率和用户体验。 父主题: 基础问题
件,后续的特征工程、排序算法、在线服务都会用到该文件。全局特征信息文件需要和画像中字段一致,其中BASIC_INFO为画像表中定义的基本属性字段,TAGS为画像表中定义的带权重的标签,Context为上下文属性。该文件用于说明数据字段信息,以便推荐系统识别用户离线数据,通过特征工
间是独立的。即根据不同的离线计算得到的候选集以及相关参数,提供不同的推荐服务。 在线服务 效果评估 指用于通过推荐系统推荐出去的结果集并利用trace_id回流到推荐系统的行为的点击率、转化率等指标的计算。 效果评估 父主题: 自定义场景