检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
安装配置Grafana 在Windows上安装配置Grafana 在Linux上安装配置Grafana 在Notebook上安装配置Grafana 父主题: 使用Grafana查看AOM中的监控指标
通过智能标注方式标注数据 创建智能标注作业 确认智能标注作业的数据难例 使用自动分组智能标注作业 父主题: 标注ModelArts数据集中的数据
设置无条件自动重启 背景信息 训练过程中可能会碰到预期外的情况导致训练失败,且无法及时重启训练作业,导致训练周期长,而无条件自动重启可以避免这类问题。无条件自动重启是指当训练作业失败时,不管什么原因系统都会自动重启训练作业,提高训练成功率和提升作业的稳定性。为了避免无效重启浪费算
的失败原因做一个综合判断。 常见训练问题定位思路如下: 根据日志界面提示中提供的分析建议解决。 参考案例解决:会提供当前故障对应的指导文档链接,请参照文档中的解决方案修复问题。 重建作业:建议重建作业进行重试,大概率能修复问题。 上一步不能解决问题时,可以尝试分析日志中提示的错误信息,定位并解决问题。
制作自定义镜像用于创建Notebook Notebook的自定义镜像制作方法 在ECS上构建自定义镜像并在Notebook中使用 在Notebook中通过Dockerfile从0制作自定义镜像 在Notebook中通过镜像保存功能制作自定义镜像 父主题: 制作自定义镜像用于ModelArts
配置Lite Server软件环境 NPU服务器上配置Lite Server资源软件环境 GPU服务器上配置Lite Server资源软件环境 父主题: Lite Server资源配置
inputs:可选参数,一个list,每个元素都是2生成的实例。 job_name:可选参数,训练任务名,便于区分和记忆。 本地单机调试训练任务开始后,SDK会依次帮助用户完成以下流程: 初始化训练作业,如果2指定的训练数据在OBS上,这里会将数据下载到local_path中。 执行训练任务,用户的训练代码需要将训练
LLama-Factory ShareGPT 指令微调数据:ShareGPT 格式来源于通过记录 ChatGPT 与用户对话的数据集,主要用于对话系统的训练。它更侧重于多轮对话数据的收集和组织,模拟用户与 AI 之间的交互。数据集包含有以下字段: conversations:包含一系列对话对象,每个
如何在ModelArts的Notebook中配置Conda源? 用户可以在Notebook开发环境中自行安装开发依赖包,方便使用。常见的依赖安装支持pip和Conda,pip源已经配置好,可以直接使用安装,Conda源需要多一步配置。 本章节介绍如何在Notebook开发环境中配置Conda源。
若要在生产环境中进行精度测试,还需修改benchmark_eval/config/config.json中app_code,app_code获取方式见访问在线服务(APP认证)。 Step2 查看精度测试结果 默认情况下,评测结果会按照result/{service_name}/{eval_
仅支持使用Snt9b资源的同步在线服务。 只支持针对整节点资源复位,请确保部署的在线服务为8*N卡规格,请谨慎评估对部署在该节点的其他服务的影响。 开启故障自动重启 用户可以在部署在线服务任务时,勾选“高级选项”的“现在配置”,可以看到“故障自动重启”参数,打开开关即可。 图1 故障自动重启 父主题: 管理同步在线服务
通过人工标注方式标注数据 创建ModelArts人工标注作业 人工标注图片数据 人工标注文本数据 人工标注音频数据 人工标注视频数据 管理标注数据 父主题: 标注ModelArts数据集中的数据
py”中,需要添加一个子类,该子类继承对应模型类型的父类,各模型类型的父类名称和导入语句如表1所示。导入语句所涉及的Python包在ModelArts环境中已配置,用户无需自行安装。 表1 各模型类型的父类名称和导入语句 模型类型 父类 导入语句 TensorFlow TfServingBaseService
e.yaml。 配置用户名密码鉴权 以在虚拟机上使用ma-cli configure为例,介绍如何配置用户名密码进行鉴权。 以下样例中所有以${}装饰的字符串都代表一个变量,用户可以根据实际情况指定对应的值。 比如${your_password}表示输入用户自己的密码信息。 #
TfServingBaseService class MnistService(TfServingBaseService): # 预处理中处理用户HTTPS接口输入匹配模型输入 # 对应上述训练部分的模型输入为{"images":<array>} def _preprocess(self
管理Lite Cluster节点池 为帮助您更好地管理Kubernetes集群内的节点,ModelArts支持通过节点池来管理节点。一个节点池包含一个节点或多个节点,能通过节点池批量配置一组节点。 在资源池详情页,单击“节点池管理”页签,您可以创建、更新和删除节点池。 图1 节点池管理
Standard支持用户构建自定义镜像用于模型训练。 自定义镜像的制作要求用户对容器相关知识有比较深刻的了解,除非订阅算法和预置框架无法满足需求,否则不推荐使用。自定义镜像需上传至容器镜像服务(SWR),才能用于ModelArts Standard上训练。 自定义镜像的启动命令规范 用户遵循M
使用自动学习实现预测分析 准备预测分析数据 创建预测分析项目 训练预测分析模型 部署预测分析服务 父主题: 使用自动学习实现零代码AI开发
等类型。对于布尔类型,建议用户在训练脚本中使用action='store_true'的形式来解析。 framework_type:必选参数,训练作业使用的AI框架类型,可参考步骤5的返回结果。 train_instance_type:必选参数,训练实例类型,这里指定’local’即为本地训练。
_wirte_check_passed = True df = pd.read_csv(ff, **param) 必现的问题,使用本地Pycharm远程连接Notebook调试。 建议与总结 在创建训练作业前,推荐您先使用ModelArts开发环境调试训练代码,避免代码迁移过程中的错误。 直