检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
性能监控 在运维监控页面左侧导航栏单击“监控>性能监控”,进入性能监控页面。在性能监控页面展示以下这些性能指标的趋势,其中包括: CPU使用率(%) 内存使用率(%) 磁盘使用率(%) 磁盘I/O(KB/s) 网络I/O(KB/s) tomcat连接数使用率(%) swap盘使用率(内存版)
“名称”:输入元数据的名称,文件格式默认为xml。 “存储路径”:选择OBS存储路径存储元数据。初次创建元数据,则需开通OBS(建议直接获取用户授权,自动创建OBS分桶存储)。 “定义”:有手动构建和可视化构建两种方式构建元数据模型。 手动构建:单击“添加Label”,在Label
Node2vec算法 概述 Node2vec算法通过调用word2vec算法,把网络中的节点映射到欧式空间,用向量表示节点的特征。 Node2vec算法通过回退参数 P 和前进参数 Q 来生成从每个节点出发的随机步,带有BFS和DFS的混合,回退概率正比于1/P,前进概率正比于1
共同邻居算法(Common Neighbors) 概述 共同邻居算法(Common Neighbors)是一种常用的基本图分析算法,可以得到两个节点所共有的邻居节点,直观地发现社交场合中的共同好友、以及在消费领域共同感兴趣的商品,进一步推测两个节点之间的潜在关系和相近程度。 适用场景
查看创建失败的图 当GES依赖的ECS服务的配额不足时,会出现创建图失败的情况,您可以在“图管理”页面查看创建失败的图。 操作步骤 在左侧导航栏,选择“图管理”。 在“图管理”页面中,左上角的“图管理”页签旁可以看到当前创建图失败的图数量。 图1 创图失败的图数量 单击可查看创建
"Comedy" ] } } ], } SERVER_URL:图的访问地址,取值请参考业务面API使用限制。 响应示例 状态码: 200 成功响应示例 Http Status Code: 200 { "result":
6.25元/小时×336小时 = 2100元 由此可见,该GES图实例总共产生的费用为:2100元。 计费场景二 某用户于2023/08/18 14:00:00购买了一个按需计费的十亿边图,用了一段时间后,用户发现当前规格无法满足业务需要,于2023/08/20 10:00:0
"vertices": ["27003509_北京中央电视台大楼", "39636392_八达岭长城"] } SERVER_URL:图的访问地址,取值请参考业务面API使用限制。 响应示例 状态码: 200 成功响应示例 Http Status Code: 200 { "data":
”功能进行增量导入。 查询和分析图:进入图引擎编辑页面,利用编辑器所带的功能对图进行查询和分析。 管理图:可对图进行例如启动、停止、删除、升级图等一系列管理图操作。
GES资源 资源是服务中存在的对象。在GES中,资源如下,您可以在创建自定义策略时,通过指定资源的路径来选择特定资源。 表1 GES的指定资源与对应路径 指定资源 资源名称 资源的路径 graphName GES图名称 graphName backupName GES备份名称 backupName
子图匹配(Subgraph Matching) 概述 子图匹配(subgraph matching)算法的目的是在一个给定的大图里面找到与一个给定小图同构的子图,这是一种基本的图查询操作,意在发掘图重要的子结构。 适用场景 子图匹配(subgraph matching)算法适用于
k核算法(k-core) 概述 k核算法(k-core)是图算法中的一个经典算法,用以计算每个节点的核数。其计算结果是判断节点重要性最常用的参考值之一,较好的体现了节点的传播能力。 适用场景 k核算法(k-core)适用于社区发现、金融风控等场景。 参数说明 表1 k核算法(k-core)参数说明
单源最短路算法(SSSP) 概述 单源最短路算法(SSSP)计算了图论中的一个经典问题,给出从给定的一个节点(称为源节点)出发到其余各节点的最短路径长度。 适用场景 单源最短路算法(SSSP)适用于网络路由、路径设计等场景。 参数说明 表1 单源最短路算法(SSSP)参数说明 参数
k跳算法(k-hop) 概述 k跳算法(k-hop)从起点出发,通过宽度优先搜索(BFS),找出k层与之关联的所有节点。找到的子图称为起点的“ego-net”。k跳算法会返回ego-net中节点的个数。 适用场景 k跳算法(k-hop)适用于关系发现、影响力预测、好友推荐等场景。
最短路径算法(Shortest Path) 概述 最短路径算法(Shortest Path)用以解决图论研究中的一个经典算法问题,旨在寻找图中两节点之间的最短路径。 适用场景 最短路径算法(Shortest Path)适用于路径设计、网络规划等场景。 参数说明 表1 最短路径算法(Shortest
关联预测算法(Link Prediction) 概述 关联预测算法(Link Prediction)给定两个节点,根据Jaccard度量方法计算两个节点的相似程度,预测节点之间的紧密关系。 适用场景 关联预测算法(Link Prediction)适用于社交网上的好友推荐、关系预测等场景。
时序路径分析(Temporal Paths) 概述 时序路径分析算法(Temporal Paths)区别于静态图上的路径分析,结合了动态图上信息传播的有序性,路径上后一条边的经过时间要晚于或等于前一条边,呈现时间递增(或非减)性。 时序路径不满足传递性:即从节点i到节点j有一条时
} } ], "overrideExists": true } SERVER_URL:图的访问地址,取值请参考业务面API使用限制。 样例中,假设“6”这个点已存在图中,则覆盖“6”这个点的属性。 响应示例 状态码: 200 成功响应示例
"Alice" ] ], "directed":false } SERVER_URL:图的访问地址,取值请参考业务面API使用限制。 请求参数 表2 Body参数说明 参数 是否必选 类型 说明 paths 是 List 需要查询的路径集合。
Lethal Weapon&index=0&label=rate&property=Score&value=5 SERVER_URL:图的访问地址,取值请参考业务面API使用限制。 响应参数 表2 响应Body参数说明 参数 类型 说明 errorMessage String 系统提示信息。