检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
执行如下脚本进行权重转换生成量化系数,详细参数解释请参见https://github.com/NVIDIA/TensorRT-LLM/tree/main/examples/llama#int8-kv-cache) python convert_checkpoint.py \ --model_dir
执行权重转换。
图4 修改ChatGLMv4-9B tokenizer文件 图5 修改ChatGLMv4-9B tokenizer文件 Qwen系列 在进行HuggingFace权重转换Megatron前,针对Qwen系列模型(qwen-7b、qwen-14b、qwen-72b)中的tokenizer
架构强调高可用性,多数据中心部署确保数据与任务备份,即使遭遇故障,也能无缝切换至备用系统,维持模型训练不中断,保护长期项目免受时间与资源损耗,确保进展与收益。
__getitem__.0 在forward阶段的第一个输入存在偏差,追溯输入来源发现是torch.randint()函数在device侧随机初始化(下图第214行),由于device侧随机性无法通过seed等自动化方式固定,先通过切换CPU侧计算初始化之后再切回device侧。
训练脚本中会自动执行训练前的权重转换操作和数据处理操作。 图1 选择镜像 训练作业启动命令中输入: cd /home/ma-user/work/llm_train/AscendSpeed; sh ./scripts/install.sh; sh .
训练脚本中会自动执行训练前的权重转换操作和数据处理操作。 图1 选择镜像 训练作业启动命令中输入: cd /home/ma-user/work/llm_train/AscendSpeed; sh ./scripts/install.sh; sh .
执行convert_checkpoint.py脚本进行权重转换生成量化系数,详细参数解释请参见https://github.com/NVIDIA/TensorRT-LLM/tree/main/examples/llama#int8-kv-cache。
# 预处理后数据 |── pretrain # 预训练加载的数据 |── finetune # 微调加载的数据 |──converted_weights # HuggingFace格式转换
图1 查询结果 执行权重转换。
CHANGINGOS_FAILED: 切换操作系统失败: REINSTALLINGOS: 重装操作系统中: REINSTALLINGOS_FAILED。
CHANGINGOS_FAILED: 切换操作系统失败: REINSTALLINGOS: 重装操作系统中: REINSTALLINGOS_FAILED。
进入benchmark_tools目录下,切换一个conda环境。
如果需要部署量化模型,请参考推理模型量化在Notebook中进行权重转换,并将转换后的权重上传至OBS中。 权重文件夹不要以"model"命名,如果以"model"命名会导致后续创建AI应用报错。
步骤五:下载ComfyUI代码并安装依赖 下载ComfyUI源码 从github下载ComfyUI代码并切换到0.2.2分支。
图1 查询结果 执行权重转换。
图1 查询结果 执行权重转换。
# 输出目录,以下目录在训练过程中自动生成 |──converted_hf2mg_weight_TP${TP}PP${PP} # 训练过程Megatron格式权重 |──converted_mg2hf_weight # 训练完成转换为
# 预处理后数据 |── pretrain # 预训练加载的数据 |── finetune # 微调加载的数据 |──converted_weights # HuggingFace格式转换
# 预处理后数据 |── pretrain # 预训练加载的数据 |── finetune # 微调加载的数据 |──converted_weights # HuggingFace格式转换