检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
结构说明。 获取路径:Support-E,在此路径中查找下载ModelArts 6.3.911版本。 说明: 如果上述软件获取路径打开后未显示相应的软件信息,说明您没有下载权限,请联系您所在企业的华为方技术支持下载获取。 获取模型权重文件 表2 支持的模型列表 序号 支持模型 支持模型参数量
填写新的模型名称,后续运行会自动在该模型上新增版本") # 模型注册 model_step = wf.steps.ModelStep( name="model_step", title="模型注册", inputs=[wf.steps.ModelInpu
subnet_network_id 否 String 子网的网络ID,默认为空,当配置了vpc_id则此参数必填。需填写虚拟私有云控制台子网详情中显示的“网络ID”。通过子网可提供与其他网络隔离的、可以独享的网络资源。 security_group_id 否 String 安全组,默认为
CREATING:镜像保存中,此时Notebook不可用。 CREATE_FAILED:镜像保存失败。 ERROR:错误。 DELETED:已删除。 ACTIVE:镜像保存成功,保存的镜像可以在SWR控制台查看,同时可以基于保存的镜像创建Notebook实例。 status_message String 镜像保存操作过程中,构建信息展示。
指令微调/ppo:alpaca_en_demo rm/dpo:dpo_en_demo 多模态数据集(图像):mllm_demo,identity 【可选】 注册在dataset_info.json文件数据集名称。如选用自定义数据则需配置dataset_info.json文件,并将数据集存放于dataset_info
nfig.json文件中添加对应seed配置即可。 msprobe工具提供了seed_all接口用于固定网络中的随机数。如果客户使用了工具但取用了其他随机种子,则必须使用客户的随机种子固定随机性。 函数原型 from msprobe.pytorch.common import seed_all
CS中构建新镜像的方式(可二选一)来部署训练环境。方案的区别如下: 直接使用基础镜像方案:用户可在训练作业中直接选择基础镜像作为运行环境。但基础镜像中pip依赖包缺少或版本不匹配,因此每次创建训练作业时,训练作业的启动命令中都需要执行 install.sh 文件,来安装依赖以及下载完整代码。
CS中构建新镜像的方式(可二选一)来部署训练环境。方案的区别如下: 直接使用基础镜像方案:用户可在训练作业中直接选择基础镜像作为运行环境。但基础镜像中pip依赖包缺少或版本不匹配,因此每次创建训练作业时,训练作业的启动命令中都需要执行 install.sh 文件,来安装依赖以及下载完整代码。
CS中构建新镜像的方式(可二选一)来部署训练环境。方案的区别如下: 直接使用基础镜像方案:用户可在训练作业中直接选择基础镜像作为运行环境。但基础镜像中pip依赖包缺少或版本不匹配,因此每次创建训练作业时,训练作业的启动命令中都需要执行 install.sh 文件,来安装依赖以及下载完整代码。
CS中构建新镜像的方式(可二选一)来部署训练环境。方案的区别如下: 直接使用基础镜像方案:用户可在训练作业中直接选择基础镜像作为运行环境。但基础镜像中pip依赖包缺少或版本不匹配,因此每次创建训练作业时,训练作业的启动命令中都需要执行 install.sh 文件,来安装依赖以及下载完整代码。
开启训练故障自动重启功能 创建训练作业时,可开启自动重启功能。当环境问题导致训练作业异常时,系统将自动修复异常或隔离节点,并重启训练作业,提高训练成功率。为了避免丢失训练进度、浪费算力。此功能已适配断点续训练。 图3 开启故障重启 断点续训练是通过checkpoint机制实现。check
开启训练故障自动重启功能 创建训练作业时,可开启自动重启功能。当环境问题导致训练作业异常时,系统将自动修复异常或隔离节点,并重启训练作业,提高训练成功率。为了避免丢失训练进度、浪费算力。此功能已适配断点续训练。 图2 开启故障重启 断点续训练是通过checkpoint机制实现。check
表示算法所依赖的引擎,使用3记录的“engine_name”和“engine_version”。 返回状态码“200 OK”,表示创建算法成功,响应Body如下所示: { "metadata": { "id": "01c399ae-8593-4ef5-9e4d-085950aacde1"
01, desc_act=False, sym=True, use_exllama=False) 您也可以将自己的数据集作为字符串列表传递,但强烈建议使用GPTQ论文中的相同数据集。 dataset = ["auto-gptq is an easy-to-use model quantization
包含了本教程中使用到的推理部署代码和推理评测代码、推理依赖的算子包。代码包具体说明请参见模型软件包结构说明。 获取路径:Support-E 说明: 如果上述软件获取路径打开后未显示相应的软件信息,说明您没有下载权限,请联系您所在企业的华为方技术支持下载获取。 支持的模型列表和权重文件 本方案支持vLLM的v0.5.0
元/小时)。按照计算资源费用、存储费用结算,那么运行这个自动学习作业的费用计算过程如下: 创建自动学习项目时,无法直接选择专属资源池。可在项目创建成功后,进入自动学习详情页,然后单击右上角“配置”,在“Workflow配置 > 资源配置”中,选择使用专属资源池。 存储费用:自动学习作业的
开启训练故障自动重启功能 创建训练作业时,可开启自动重启功能。当环境问题导致训练作业异常时,系统将自动修复异常或隔离节点,并重启训练作业,提高训练成功率。为了避免丢失训练进度、浪费算力。此功能已适配断点续训练。 图3 开启故障重启 断点续训练是通过checkpoint机制实现。check
节点的状态。枚举值如下: init:初始化 wait_inputs:等待输入 pending:等待 creating:创建中 created:创建成功 create_failed:创建失败 running:运行中 stopping:停止中 stopped:停止 timeout:超时 completed:完成
开启训练故障自动重启功能 创建训练作业时,可开启自动重启功能。当环境问题导致训练作业异常时,系统将自动修复异常或隔离节点,并重启训练作业,提高训练成功率。为了避免丢失训练进度、浪费算力。此功能已适配断点续训练。 图2 开启故障重启 断点续训练是通过checkpoint机制实现。check
开启训练故障自动重启功能 创建训练作业时,可开启自动重启功能。当环境问题导致训练作业异常时,系统将自动修复异常或隔离节点,并重启训练作业,提高训练成功率。为了避免丢失训练进度、浪费算力。此功能已适配断点续训练。 图2 开启故障重启 断点续训练是通过checkpoint机制实现。check