检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
练失败终止。 checkpoint保存频率的修改命令如下: --checkpointing_steps=5000 训练执行成功如下图所示。 图1 训练执行成功 父主题: 文生图模型训练推理
址与"/generate"拼接而成;若以openai接口方式启动服务,API接口公网地址与"/v1/completions"拼接而成。部署成功后的在线服务详情页中可查看API接口公网地址。 图1 API接口公网地址 --app-code:获取方式见访问在线服务(APP认证)。 -
通过打印所有Pod的信息,并找到命名有scheduler字段的Pod。 kubectl get pod -A -o wide 重启该Pod,通过delete的方式删除,但随后会自动重新启动。 kubectl delete pod -n kube-system ${pod_scheduler_name} 若重启
通过打印所有Pod的信息,并找到命名有scheduler字段的Pod。 kubectl get pod -A -o wide 重启该Pod,通过delete的方式删除,但随后会自动重新启动。 kubectl delete pod -n kube-system ${pod_scheduler_name} 若重启
通过打印所有Pod的信息,并找到命名有scheduler字段的Pod。 kubectl get pod -A -o wide 重启该Pod,通过delete的方式删除,但随后会自动重新启动。 kubectl delete pod -n kube-system ${pod_scheduler_name} 图3 scheduler
用户与委托对应关系 每个用户必须关联委托才可以使用ModelArts,但即使委托所赋之权限不足,在API调用之初也不会报错,只有到系统具体使用到该功能时,才会发生问题。例如,用户在创建训练任务时打开了“消息通知”,该功能依赖SMN委托授权,但只有训练任务运行过程中,真正需要发送消息时,系统才会“
通过打印所有Pod的信息,并找到命名有scheduler字段的Pod。 kubectl get pod -A -o wide 重启该Pod,通过delete的方式删除,但随后会自动重新启动。 kubectl delete pod -n kube-system ${pod_scheduler_name} 图3 scheduler
唯一ID。 如下,第一组配置文件不规范将Host放到最后一行,用户要连的是下面这个Host ModelArts-Note-BmjiN实例,但SSH连到识别的是Host,错误地连到了Host ModelArts-Note-wZc6s这个实例。 按ssh-config的标准写法更新配
包含了本教程中使用到的模型训练代码、推理部署代码和推理评测代码。代码包具体说明请参见模型软件包结构说明。 获取路径:Support-E 说明: 如果上述软件获取路径打开后未显示相应的软件信息,说明您没有下载权限,请联系您所在企业的华为方技术支持下载获取。 表2 支持的模型列表 序号 支持模型 支持模型参数量 权重文件获取地址
图4所示。 图4 基于performance advisor进行性能劣化分析 完成分析后单击下图图5中view查看报告。html(图6)中显示计算维度存在高优先级的AICORE降频问题,分别为pp stage0的8号卡和pp stage3的60号卡。查看对8号卡的降频分析(图7)
CV代码包:AscendCloud-CV 算子依赖包:AscendCloud-OPP 获取路径:Support-E 说明: 如果上述软件获取路径打开后未显示相应的软件信息,说明您没有下载权限,请联系您所在企业的华为方技术支持下载获取。 支持的特性 表1 本版本支持的特性说明 分类 软件包特性说明
通过打印所有Pod的信息,并找到命名有scheduler字段的Pod。 kubectl get pod -A -o wide 重启该Pod,通过delete的方式删除,但随后会自动重新启动。 kubectl delete pod -n kube-system ${pod_scheduler_name} 若重启
--workersNum=1 --warmUpLoopCount=100 --loopCount=100 图1 调优前模型 图2 调优后模型 AOE优化成功的mindir已经融合了优化的知识库,是一个独立可用的模型。即使AOE知识库删除,不影响该mindir的性能。可以备份这个模型优化产生的知识库,以后需要的话再使用。
b-chat-test。 eval_dataset:评测使用的评测集(枚举值),目前仅支持mmlu、ceval。 service_url:成功部署推理服务后的服务预测地址,示例:http://${docker_ip}:8080/generate。此处的${docker_ip}替换
1:${port}/v1/completions";若服务部署在生产环境中,该地址由API接口公网地址与"/v1/completions"拼接而成,部署成功后的在线服务详情页中可查看API接口公网地址。 图1 API接口公网地址 few_shot:开启少量样本测试后添加示例样本的个数。默认为3,取值范围为0~5整数。
用户与委托对应关系 每个用户必须关联委托才可以使用ModelArts,但即使委托所赋之权限不足,在API调用之初也不会报错,只有到系统具体使用到该功能时,才会发生问题。例如,用户在创建训练任务时打开了“消息通知”,该功能依赖SMN委托授权,但只有训练任务运行过程中,真正需要发送消息时,系统才会“
址与"/generate"拼接而成;若以openai接口方式启动服务,API接口公网地址与"/v1/completions"拼接而成。部署成功后的在线服务详情页中可查看API接口公网地址。 图1 API接口公网地址 --app-code:获取方式见访问在线服务(APP认证)。 -
开启训练故障自动重启功能 创建训练作业时,可开启自动重启功能。当环境问题导致训练作业异常时,系统将自动修复异常或隔离节点,并重启训练作业,提高训练成功率。为了避免丢失训练进度、浪费算力。此功能已适配断点续训练。 图4 开启故障重启 断点续训练是通过checkpoint机制实现。check
调过程中,除了输出层外,模型的所有参数都将被调整以适应新的任务。 dataset identity,alpaca_en_demo 【可选】注册在dataset_info.json文件数据集名称。如选用定义数据请参考准备数据(可选)配置dataset_info.json文件,并将数据集存放于dataset_info
源排队,不能保证每次都可以得到资源执行相关操作。 DLI支持schema映射的功能,即导入的表的schema的字段名称可以不和数据集相同,但类型要保持一致。 父主题: 导入数据到ModelArts数据集