检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
什么情况下需要微调 微调的目的是为了提升模型在某个特定任务或领域的表现。在大多数场景下,通过Prompt工程,通用模型也能给出比较满意的回答。但如果您的场景涉及以下几种情况,则建议采用微调的手段来解决: 目标任务依赖垂域背景知识:通用模型学习到的知识大部分都是来自互联网上的开源数据,
工具返回:2023-11-17 15:00到2023-11-17 20:00的2303已预订成功 - 步骤2 答复:好的,2023-11-17 15:00到2023-11-17 20:00的2303会议室已为您预订成功。 多轮执行: messages = [ConversationMessage(role=Role
无监督的领域知识数据,量级无法支持增量预训练,如何让模型学习 一般来说,建议采用增量预训练的方式让模型学习领域知识,但预训练对数据量的要求较大,如果您的无监督文档量级过小,达不到预训练要求,您可以通过一些手段将其转换为有监督数据,再将转换后的领域知识与目标任务数据混合,使用微调的方式让模型学习。
为什么微调后的模型,输入与训练样本相似的问题,回答与训练样本完全不同 当您将微调的模型部署以后,输入一个已经出现在训练样本中,或虽未出现但和训练样本差异很小的问题,回答完全错误。这种情况可能是由于以下几个原因导致的,建议您依次排查: 训练参数设置:您可以通过绘制Loss曲线查询来
外部工具调用执行,一般包括任务规划、记忆系统和执行系统。 任务规划:将复杂目标任务分解为小的可执行子任务,通过评估、自我反思等方式提升规划成功率。 记忆系统:通过构建记忆模块去管理历史任务和策略,并让Agent结合记忆模块中相关的信息以获取最优化任务解决策略。 任务执行:能通过工
准备工作 注册华为账号并开通华为云,并完成实名认证,账号不能处于欠费或冻结状态。 检查开发环境要求,确认本地已具备开发环境。 开通盘古大模型API。 登录盘古大模型套件平台。 在左侧导航栏中选择“服务管理”,在相应服务的操作列单击“查看详情”,可在服务列表中申请需要开通的服务。
外部工具调用执行,一般包括任务规划、记忆系统、执行系统: 任务规划:将复杂目标任务分解为小的可执行子任务,通过评估、自我反思等方式提升规划成功率。 记忆系统:通过构建记忆模块去管理历史任务和策略,并让Agent结合记忆模块中相关的信息以获取最优化任务解决策略。 任务执行:能通过工
在导入证书的地方上传环境B下载的证书文件,并选择需要导出的模型和模型导出的obs路径。 图3 导出模型 单击“确定”,导出模型。 模型导出成功后,可以在obs中查看导出后的模型文件。下载该obs文件,上传到环境B对应的obs桶中。 登录环境B的盘古大模型套件平台,在“模型迁移”页
准备工作 注册华为账号并开通华为云 购买盘古大模型套件 开通盘古大模型服务 配置盘古访问授权 创建子用户并授权使用盘古
} } 图6 填写请求Body 单击Postman界面“Send”按钮,发送请求。当接口返回状态为201时,表示Token接口调用成功,此时单击“Headers”选项,找到并复制“X-Subject-Token”参数对应的值,该值即为需要获取的Token。 图7 获取Token
部署为边缘服务 边缘服务部署流程 边缘部署准备工作 注册边缘资源池节点 搭建边缘服务器集群 安装Ascend插件 订购盘古边缘部署服务 部署边缘模型 调用边缘模型 父主题: 部署盘古大模型
潜力。 图1 盘古大模型套件使用流程 表1 使用流程说明 流程 子流程 说明 操作指导 准备工作 注册华为账号并开通华为云 在使用华为云服务之前您需要注册华为账号并开通华为云。 注册华为账号并开通华为云 购买盘古大模型套件 购买盘古系列大模型及推理资产。 购买盘古大模型套件 开通盘古大模型服务
} } 图4 填写请求Body 单击Postman界面的“Send”按钮,发送请求。当接口返回状态为201时,表示Token接口调用成功。单击“Headers”选项,复制“X-Subject-Token”参数对应的值,该值即为获取的Token。 图5 获取Token
103</version> </dependency> Python 使用pip安装。 #回显Successfully installed xxx表示安装成功 # 安装核心库 pip install huaweicloudsdkcore # 安装盘古服务库 pip install huaweic
} } 图6 填写请求Body 单击Postman界面“Send”按钮,发送请求。当接口返回状态为201时,表示Token接口调用成功,此时单击“Headers”选项,找到并复制“X-Subject-Token”参数对应的值,该值即为需要获取的Token。 图7 获取Token
典型训练问题和优化策略 什么情况下需要微调 什么情况下不建议微调 数据量很少,可以微调吗 数据量足够,但质量较差,可以微调吗 无监督的领域知识数据,量级无法支持增量预训练,如何让模型学习 如何调整训练参数,使模型效果最优 如何判断训练状态是否正常 如何评估微调后的模型是否正常 如何调整推理参数,使模型效果最优
} } 图5 填写请求Body 单击Postman界面“Send”按钮,发送请求。当接口返回状态为201时,表示Token接口调用成功,此时单击“Headers”选项,找到并复制“X-Subject-Token”参数对应的值,该值即为需要获取的Token。 图6 获取Token
\"meetingRoom\": \"A01\"}" 工具返回:2024-05-08 08:00到2024-05-08 09:00的A01已预订成功 - 步骤3 答复:"已为您预订 A01会议室,时间为2024年5月8日早上8点到9点。 " 多轮执行增强 上述的例子中实际运行时
这种卓越的表现源于其先进的算法和深度学习架构。盘古大模型能够深入理解语言的内在逻辑与语义关系,因此在处理复杂语言任务时展现出更高的精准度和效率。这不仅提高了任务的成功率,也大幅提升了用户体验,使盘古大模型成为企业和开发者构建智能应用的首选。 创作能力强 盘古大模型通过海量数据训练,能够捕捉更多语言规律和
一段或几段段落知识的场景下进行总结回答的能力。因此,如果您的场景是基于某个领域内的知识问答,那么采用微调的手段确实能从一定程度上提升效果,但如果综合考虑训练的耗时和模型后续的持续迭代,采用搜索+问答的方案则更具性价比。 父主题: 典型训练问题和优化策略