检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
Pangu-NLP-N2-Base-20241030 - 2024年11月发布的版本,仅支持模型增量预训练。32个训练单元起训,预训练后的模型版本需要通过微调之后,才可支持推理部署。 Pangu-NLP-N2-Chat-32K-20241030 32K 2024年10月发布版本,支持8K
输入参数对应。 plugin_configs 否 List<PluginConfig> 插件配置,当工作流有配置用户自定义插件节点时,可能需要配置鉴权信息等,具体结构定义详见表4。 表4 PluginConfig参数 参数 是否必选 参数类型 描述 plugin_id 是 String
具体订购步骤如下: 使用主账户登录ModelArts Studio大模型开发平台,单击“立即订购”进入“订购”页面。 在“开发场景”中勾选需要订购的大模型(可多选),页面将根据勾选情况适配具体的订购项。 图1 选择开发场景 在“模型资产”页面,参考表1完成模型资产的订购。 表1 模型资产订购说明
单个文件大小不超过50GB,单个压缩包大小不超过50GB,文件数量最多1000个。 物体检测 PASCAL VOC 由图片文件和对应的标注文件构成,标注文件需要满足PASCAL VOC文件格式。要求用户将标注对象和标注文件存储在同一目录,并且相互对应,如标注对象文件名为“IMG_2.jpg”,那么标注文件的文件名应为“IMG_2
引导模型逐步分析问题,可以有效提高大模型在复杂推理任务中的准确性。这种方法不仅帮助模型更好地理解问题,还能增强模型的推理能力,特别是在处理需要多步推理的任务时。 父主题: 提示词工程类
登录ModelArts Studio大模型开发平台,在“我的空间”模块,单击进入所需空间。 在左侧导航栏中选择“能力调测”,单击“文本对话”页签。 选择需要调用的服务。可从“预置服务”或“我的服务”中选择。 填写系统人设。如“你是一个AI助手”,若不填写,将使用系统默认人设。 在页面右侧配置参数,具体参数说明见表1。
据集”,用于后续模型训练等操作。 平台支持发布的数据集格式为默认格式、盘古格式。 默认格式:平台默认的格式。 盘古格式:训练盘古大模型时,需要发布为该格式。当前仅文本类、图片类数据集支持发布为盘古格式。 父主题: 使用数据工程构建数据集
息及评测概览。 其中,各评测指标说明详见NLP大模型评测指标说明。 导出评测报告。 在“评测报告 > 评测明细”页面,单击“导出”,可选择需要导出的评测报告,单击“确定”。 单击右侧“下载记录”,可查看导出的任务ID,单击操作列“下载”,可将评测报告下载到本地。 NLP大模型评测指标说明
et分别表示问题、答案。 [{"system":"你是一位书籍推荐专家"},{"context":"你好","target":"嗨!你好,需要点什么帮助吗?"},{"context":"能给我推荐点书吗?","target":"当然可以,基于你的兴趣,我推荐你阅读《自动驾驶的未来》。"}]
词设置相同变量值查看效果。 提示词评估 提示词评估以任务维度管理,支持评估任务的创建、查询、修改、删除。支持创建评估任务,选择候选提示词和需要使用的变量数据集,设置评估算法,执行任务自动化对候选提示词生成结果和结果评估。 提示词管理 提示词管理支持用户对满意的候选提示词进行保存管理,同时支持提示词的查询、删除。
结束节点是工作流的最终节点。当工作流执行完成后,需要结束节点用于输出工作流的执行结果。结束节点不支持新增或者删除,该节点后不支持添加其他节点。 结束节点可能会有多个输入,但是只能有一个输出值,因此需要开发者在“指定回复”中合并多个输入值为一个输出值。 结束节点为必选节点,需要配置于所有场景中。 结束节点配置步骤如下:
进入所需空间。 在左侧导航栏中选择“数据工程 > 数据加工 > 数据合成”,单击界面右上角“创建合成任务”。 在“创建合成任务”页面,选择需要合成的数据集,单击“下一步”。 进入“合成配置”页面,选择合成内容与合成轮数,可选择开启“将源数据集整合至合成后数据”。 单击“下一步”,
ntent。 role表示对话的角色,取值是system或user。 如果需要模型以某个人设形象回答问题,可以将role参数设置为system。不使用人设时,可设置为user。在一次会话请求中,人设只需要设置一次。 content表示对话的内容,可以是任意文本。 messages
准,某城市关注某一些特定事件类别,另一个城市又关注另一些特定事件类别。因此,城市政务场景面临着众多碎片化AI需求场景。 传统的AI开发模式需要对每种目标类别单独采集数据、训练模型,依赖专家经验进行算法参数调优,最后才能上线应用。基于ModelArts Studio平台开发工作流,
Pangu-NLP-N2-Base-20241030 - 4K 2024年11月发布的版本,仅支持模型增量预训练。32个训练单元起训,预训练后的模型版本需要通过微调之后,才可支持推理部署。 Pangu-NLP-N2-Chat-32K-20241030 32K 4K 2024年10月发布版本,支
升了推理速度。在处理请求时,模型能够更快地生成结果,减少等待时间,从而提升用户体验。这种快速的推理能力使盘古大模型适用于广泛的应用场景。在需要实时反馈的业务中,如在线客服和智能推荐,盘古大模型能够迅速提供准确的结果。 迁移能力强 盘古大模型的迁移能力是其适应多变业务需求的关键。除
状态码 HTTP状态码为三位数,分成五个类别:1xx:相关信息;2xx:操作成功;3xx:重定向;4xx:客户端错误;5xx:服务器错误。 状态码如下所示。 状态码 编码 状态说明 100 Continue 继续请求。 这个临时响应用来通知客户端,它的部分请求已经被服务器接收,且仍未被拒绝。
至最终输出结论。 Self-instruct Self-instruct是一种将预训练语言模型与指令对齐的方法,允许模型自主生成数据,而不需要大量的人工标注。 父主题: 基础知识
力,加速业务开发进程。 API文档 NLP大模型 科学计算大模型 Agent开发 Token计算器 02 准备工作 使用盘古大模型服务前,需要进行一系列准备工作,确保您能够顺利使用盘古大模型服务。 准备工作 申请试用盘古大模型服务 订购盘古大模型服务 配置服务访问授权 创建并管理盘古工作空间
选择“微调”。 训练目标 选择“全量微调”。 全量微调:在模型进行有监督微调时,对大模型的所有参数进行更新。这种方法通常能够实现最佳的模型性能,但需要消耗大量计算资源和时间,计算开销较大。 基础模型 选择全量微调所用的基础模型, 可从“已发布模型”或“未发布模型”中进行选择。 高级设置