检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
向Kafka的相应topic中发送如下数据: {"order_id":"202103241000000001", "order_channel":"webShop", "order_time":"2021-03-24 10:00:00", "pay_amount":"100.00", "real_pay":"100
连接Kafka集群,向kafka中插入如下测试数据: {"order_id":"202103241000000001", "order_channel":"webShop", "order_time":"2021-03-24 10:00:00", "pay_amount":"100.00", "real_pay":"100
连接Kafka集群,向kafka中插入如下测试数据: {"order_id":"202103241000000001", "order_channel":"webShop", "order_time":"2021-03-24 10:00:00", "pay_amount":"100.00", "real_pay":"100
is 否 15000 Integer redis集群失败时的休眠时间。 scan-keys-count 否 1000 Integer 每次扫描时读取的数量。 default-score 否 0 Double 当data-type设置为“sorted-set”数据类型的默认score。
dynamicPartitionPruning.enabled = true 该配置项用于启用或禁用动态分区修剪。在执行SQL查询时,动态分区修剪可以帮助减少需要扫描的数据量,提高查询性能。 配置为true时,代表启用动态分区修剪,SQL会在查询中自动检测并删除那些不满足WHERE子句条件的分区,适用于在处理具有大量分区的表时。
is 否 15000 Integer redis集群失败时的休眠时间。 scan-keys-count 否 1000 Integer 每次扫描时读取的数量。 default-score 否 0 Double 当data-type设置为“sorted-set”数据类型的默认score。
Windows系统,支持Windows7以上版本。 安装JDK JDK使用1.8版本。 安装和配置IntelliJ IDEA IntelliJ IDEA为进行应用开发的工具,版本要求使用2019.1或其他兼容版本。 安装Maven 开发环境的基本配置。用于项目管理,贯穿软件开发生命周期。 开发流程 DLI进行
kafkaSource; 向kafka中插入如下数据: {"order_id":"202103241000000001", "order_channel":"webShop", "order_time":"2021-03-24 10:00:00", "pay_amount":"100.00", "real_pay":"100
DLI Flink作业专为实时数据流处理设计,适用于低时延、需要快速响应的场景,支持与多种云服务跨源连通,形成丰富的流生态圈。适用于实时监控、在线分析等场景。 · Flink OpenSource作业:DLI提供了标准的连接器(connectors)和丰富的API,便于快速与其他数据系统的集成。
个文件中的记录总数约为130K。 默认值(60000)大约是此近似值的一半。 注意: 将此值设置得太低,将产生很多误报,并且索引查找将必须扫描比其所需的更多的文件;如果将其设置得非常高,将线性增加每个数据文件的大小(每50000个条目大约4KB)。 60000 hoodie.index
scala-collection-compat_2.12-2.1.1.jar datanucleus-api-jdo-4.2.4.jar jetty-webapp-9.4.41.v20210516.jar scala-compiler-2.12.16.jar datanucleus-core-4
示例 下面的示例展示了一个经典的业务流水线,维度表来自 Hive,每天通过批处理流水线作业或 Flink 作业更新一次,kafka流来自实时在线业务数据或日志,需要与维度表连接以扩充流。 使用spark sql 创建 hive obs 外表,并插入数据。 CREATE TABLE if
具体操作可参考:Kafka客户端接入示例。 {"order_id":"202103241000000001", "order_channel":"webShop", "order_time":"2021-03-24 10:00:00", "pay_amount":"100.00", "real_pay":"100
e topic中插入如下测试数据: {"order_id":"202103241000000001","order_channel":"webShop","order_time":"2021-03-24 10:00:00","pay_amount":100.0,"real_pay":100
flink.dli.job.agency.name=*** Flink Jar作业示例。 环境准备 已安装和配置IntelliJ IDEA等开发工具以及安装JDK和Maven。 pom文件配置中依赖包 <properties> <flink.version>1.15.0</flink
Kafka生产和发送数据的方法请参考:连接实例生产消费信息。 {"order_id":"202103241000000001", "order_channel":"webShop", "order_time":"2021-03-24 10:00:00", "pay_amount":"100.00", "real_pay":"100
li_management_agency的委托信息。 步骤1:开发Jar包并上传数据至OBS DLI控制台不提供Jar包的开发能力,您需要在线下完成Jar包的开发。Jar包的开发样例请参考Flink Jar开发基础样例。 参考Flink作业样例代码开发Flink Jar作业程序,
做了安全加固。 为了避免依赖包兼容性问题或日志输出及转储问题,打包时请注意排除以下文件: 系统内置的依赖包,或者在Maven或者Sbt构建工具中将scope设为provided 日志配置文件(例如:“log4j.properties”或者“logback.xml”等) 日志输出实现类JAR包(例如:log4j等)
本做了安全加固。为了避免依赖包兼容性问题或日志输出及转储问题,打包时请注意排除以下文件: 系统内置的依赖包,或者在Maven或者Sbt构建工具中将scope设为provided 日志配置文件(例如:“log4j.properties”或者“logback.xml”等) 日志输出实现类JAR包(例如:log4j等)