检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
Step2 权重格式转换 AutoAWQ量化完成后,使用int32对int4的权重进行打包。昇腾上使用int8对权重进行打包,需要进行权重转换。 进入llm_tools代码目录下执行以下脚本: 执行时间预计10分钟。执行完成后会将权重路径下的原始权重替换成转换后的权重。如需保留之前权重格式,请在转换前备份。
单模型性能测试工具Mindspore lite benchmark 在模型精度对齐后,针对Stable Diffusion模型性能调优,可以通过AOE工具进行自助性能调优,进一步可以通过profiling工具对于性能瓶颈进行分析,并针对性的做一些调优操作。 可以直接使用bench
XXX,表示模型中没有导入对应依赖模块。 处理方法 依赖模块没有导入,需要您在模型推理代码中导入缺失依赖模块。 例如您的AI应用是Pytorch框架,部署为在线服务时出现告警:ModuleNotFoundError: No module named ‘model_service.tfserving
如何将Keras的.h5格式模型导入到ModelArts中 ModelArts不支持直接导入“.h5”格式的模型。您可以先将Keras的“.h5”格式转换为TensorFlow的格式,然后再导入ModelArts中。 从Keras转TensorFlow操作指导请参见其官网指导。 父主题: 导入模型
上传本地文件至JupyterLab Notebook的JupyterLab中提供了多种方式上传文件。 上传文件要求 对于大小不超过100MB的文件直接上传,并展示文件大小、上传进度及速度等详细信息。 对于大小超过100MB不超过50GB的文件可以使用OBS中转,系统先将文件上传O
上传远端文件至JupyterLab 在Notebook的JupyterLab中,支持通过远端文件地址下载文件。 要求:远端文件的URL粘贴在浏览器的输入框中时,可以直接下载该文件。 通过JupyterLab打开一个运行中的Notebook。 单击JupyterLab窗口上方导航栏的ModelArts
克隆GitHub开源仓库文件到JupyterLab 在Notebook的JupyterLab中,支持从GitHub开源仓库Clone文件。 通过JupyterLab打开一个运行中的Notebook。 单击JupyterLab窗口上方导航栏的ModelArts Upload Fil
上传OBS文件到JupyterLab 在Notebook的JupyterLab中,支持将OBS中的文件下载到Notebook。注意:文件大小不能超过10GB,否则会上传失败。 通过JupyterLab打开一个运行中的Notebook。 单击JupyterLab窗口上方导航栏的ModelArts
推理模型量化 使用AWQ量化工具转换权重 使用SmoothQuant量化工具转换权重 使用kv-cache-int8量化 使用GPTQ量化 父主题: 主流开源大模型基于Standard适配PyTorch NPU推理指导(6.3.908)
推理模型量化 使用AWQ量化工具转换权重 使用SmoothQuant量化工具转换权重 使用kv-cache-int8量化 使用GPTQ量化 父主题: 主流开源大模型基于Standard适配PyTorch NPU推理指导(6.3.909)
推理模型量化 使用AWQ量化工具转换权重 使用SmoothQuant量化工具转换权重 使用kv-cache-int8量化 父主题: 主流开源大模型基于Standard适配PyTorch NPU推理指导(6.3.907)
推理模型量化 使用AWQ量化工具转换权重 使用SmoothQuant量化工具转换权重 使用kv-cache-int8量化 父主题: 主流开源大模型基于Standard适配PyTorch NPU推理指导(6.3.906)
实时推理的部署及使用流程 在创建完AI应用后,可以将AI应用部署为一个在线服务。当在线服务的状态处于“运行中”,则表示在线服务已部署成功,部署成功的在线服务,将为用户提供一个可调用的API,此API为标准Restful API。访问在线服务时,您可以根据您的业务需求,分别确认使用何种认证方式、
定义模型规范,否则该模型无法正常使用AI Gallery工具链服务(微调大师和在线推理服务)。 当托管的是自定义镜像时,上传的模型文件要满足自定义镜像规范,否则该镜像无法正常使用AI Gallery工具链服务(微调大师和在线推理服务)。 当文件状态变成“上传成功”表示数据文件成功上传至AI
Notebook是Linux环境,和Windows环境下的换行格式不同,Windows下是CRLF,而Linux下是LF。 解决方法 可以在Notebook中转换文件格式为Linux格式。 shell语言: dos2unix 文件名 父主题: 代码运行故障
于PyTorch、TensorFlow和MindSpore等引擎的AI模型。 支持通过JupyterLab工具在线打开Notebook,具体请参见通过JupyterLab在线使用Notebook实例进行AI开发。 支持本地IDE的方式开发模型,通过开启SSH连接,用户本地IDE可
Notebook是Linux环境,和Windows环境下的换行格式不同,Windows下是CRLF,而Linux下是LF。 解决方法 可以在Notebook中转换文件格式为Linux格式。 shell语言: dos2unix 文件名 父主题: 代码运行常见错误
graph failed 问题现象 日志提示:Compile graph failed。 图1 报错提示 原因分析 模型转换时未指定Ascend后端。 处理方法 需要在模型转换阶段指定“--device=Ascend”。 父主题: 常见问题
刚开始会报一些Warning,可忽略。正常启动如下图所示,出现Steps: 1%字样。 图4 启动服务 如果启动过程中报SSL相关错误,如下图所示。 图5 启动过程中报SSL相关错误 请修改相应路径下的/home/ma-user/anaconda3/envs/PyTorch-2.1.0/lib/python3
场景描述 本案例介绍如何在Snt9B环境中利用Deployment机制部署在线推理服务。首先创建一个Pod以承载服务,随后登录至该Pod容器内部署在线服务,并最终通过新开一个终端作为客户端来访问并测试该在线服务的功能。 图1 任务示意图 操作步骤 拉取镜像。本测试镜像为bert_