检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
在创建OBS桶创建的桶下创建文件夹用以存放数据,例如在桶standard-llama2-13b中创建文件夹training_data。 利用OBS Browser+工具将步骤1下载的数据集上传至步骤2创建的文件夹目录下。得到OBS下数据集结构: obs://<bucket_name>/training_data
ModelArts Standard数据管理支持多维度数据管理能力 数据集管理:提供数据集创建、数据预览、数据集版本管理等能力 数据标注:提供在线标注能力,包含图像分类、目标检测、音频分割、文本三元组等标注场景;提供图片智能标注方案,提升标注效率;提供团队标注能力,支持多人协同标注与标注任务的审核验收
lm_tools/spec_decode/EAGLE文件夹,使用convert_eagle_ckpt_to_vllm_compatible.py脚本进行权重转换。转换命令为 python convert_eagle_ckpt_to_vllm_compatible.py --base-path 大模型权重地址
lm_tools/spec_decode/EAGLE 文件夹,使用convert_eagle_ckpt_to_vllm_compatible.py脚本进行权重转换。转换命令为 python convert_eagle_ckpt_to_vllm_compatible.py --base-path 大模型权重地址
在训练中,程序会自动执行对数据集预处理、权重转换、执行训练等操作,具体可通过训练启动脚本说明和参数配置、训练的数据集预处理说明、训练的权重转换说明了解其中的操作。 训练完成后在SFS Turbo中保存训练的模型结果。(多机情况下,只有在rank_0节点进行数据预处理,权重转换等工作,所以原始数据集和
c_decode/EAGLE 文件夹,使用convert_eagle_ckpt_to_vllm_compatible.py脚本进行权重转换。转换命令为 python convert_eagle_ckpt_to_vllm_compatible.py --base-path 大模型权重地址
精度对齐 长训Loss比对结果 使用Msprobe工具分析偏差 Loss对齐结果 父主题: Dit模型Pytorch迁移与精度性能调优
“代码目录” 训练作业代码目录所在的OBS路径。 您可以单击代码目录后的“编辑代码”,在“OBS在线编辑”对话框中实时编辑训练脚本代码。当训练作业状态为“等待中”、“创建中”和“运行中”时,不支持“OBS在线编辑”功能。 说明: 当您使用订阅算法创建训练作业时,不支持该参数。 “启动文件” 训练作业启动文件位置。
lm_tools/spec_decode文件夹,使用convert_eagle_ckpt_to_vllm_compatible.py脚本进行权重转换。转换命令为 python convert_eagle_ckpt_to_vllm_compatible.py --base-path 大模型权重地址
PyTorch迁移精度调优 引言 精度校验 精度调优总体思路 准备工作 问题复现 Msprobe工具使用指导 父主题: GPU训练业务迁移至昇腾的通用指导
性能调优 单模型性能测试工具Mindspore lite benchmark 单模型性能调优AOE 父主题: 基于AIGC模型的GPU推理业务迁移至昇腾指导
性能调优 Profiling数据采集 使用Advisor工具分析生成调优建议 调优前后性能对比 父主题: Dit模型Pytorch迁移与精度性能调优
推理模型量化 使用AWQ量化 使用SmoothQuant量化 使用kv-cache-int8量化 使用GPTQ量化 使用llm-compressor工具量化 父主题: 主流开源大模型基于Server适配PyTorch NPU推理指导(6.3.909)
Lite Cluster资源配置 Lite Cluster资源配置流程 配置Lite Cluster网络 配置kubectl工具 配置Lite Cluster存储 (可选)配置驱动 (可选)配置镜像预热
在“资源占用情况”窗口打开时,会定期向后台获取最新的资源使用率数据并刷新。 操作一:如果训练作业使用多个计算节点,可以通过实例名称的下拉框切换节点。 操作二:单击图例“cpuUsage”、“gpuMemUsage”、“gpuUtil”、“memUsage”“npuMemUsage
推理模型量化 使用AWQ量化 使用SmoothQuant量化 使用kv-cache-int8量化 使用GPTQ量化 使用llm-compressor工具量化 父主题: 主流开源大模型基于Server适配PyTorch NPU推理指导(6.3.910)
Factory PyTorch NPU训练指导(6.3.910) 场景介绍 准备工作 执行训练任务 查看日志和性能 训练benchmark工具 训练脚本说明 附录:训练常见问题 父主题: LLM大语言模型训练推理
Factory PyTorch NPU训练指导(6.3.911) 场景介绍 准备工作 执行训练任务 查看日志和性能 训练benchmark工具 训练脚本说明 附录:训练常见问题 父主题: LLM大语言模型训练推理
推理模型量化 使用AWQ量化 使用SmoothQuant量化 使用kv-cache-int8量化 使用GPTQ量化 使用llm-compressor工具量化 父主题: 主流开源大模型基于Server适配PyTorch NPU推理指导(6.3.911)
件夹中。 下载完成后,将数据上传至SFS相应目录中。由于数据集过大,推荐先通过obsutil工具将数据集传到OBS桶后,再将数据集迁移至SFS。 在本机机器上运行,通过obsutil工具将本地数据集传到OBS桶。 # 将本地数据传至OBS中 # ./obsutil cp ${数据集所在的本地文件夹路径}