检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
ModelArts SDK目前仅支持在ModelArts开发环境Notebook和本地PC两种环境使用。 ModelArts SDK不支持在训练作业和在线服务中使用。 ModelArts SDK已经集成在ModelArts开发环境Notebook中,可以直接使用,无需进行Session鉴权。
需要。 具体的config.json的配置要求请参见介绍。 使用run_ut.py执行预检。 msprobe -f pytorch run_ut -api_info ./dump.json 这里-api_info指定的是步骤2导出的dump.json文件,表示整网计算过程中API
多模态数据集(图像):mllm_demo,identity 【可选】注册在dataset_info.json文件数据集名称。如选用定义数据请参考准备数据(可选)配置dataset_info.json文件,并将数据集存放于dataset_info.json同目录下。 dataset_dir /home/ma-user/
可以在创建训练作业页面添加标签,也可以在已经创建完成的训练作业详情页面的“标签”页签中添加标签。 在ModelArts的在线服务中添加标签。 可以在创建在线服务页面添加标签,也可以在已经创建完成的在线服务详情页面的“标签”页签中添加标签。 在ModelArts的专属资源池中添加标签。 可以在创建ModelArts
可视化视图创建自定义策略:无需了解策略语法,按可视化视图导航栏选择云服务、操作、资源、条件等策略内容,可自动生成策略。 JSON视图创建自定义策略:可以在选择策略模板后,根据具体需求编辑策略内容;也可以直接在编辑框内编写JSON格式的策略内容。 具体创建步骤请参见:创建自定义策略。下面为您介绍常用的ModelArts自定义策略样例。
API进行的Python封装,以简化用户的开发工作。用户直接调用ModelArts SDK即可轻松管理数据集、启动AI训练以及生成模型并将其部署为在线服务。 ModelArts SDK目前只提供Python语言的SDK,同时支持大于3.7.x版本且小于3.10.x版本的Python版本,推荐使用3
其中ServiceStep节点包含两个输入,一个是模型列表对象,另一个是在线服务对象,此时在运行态通过开关的方式来控制部署/更新服务,如下图所示: 在线服务开关默认关闭,节点走部署服务的流程;如果需要更新服务,则手动打开开关,选择相应的在线服务即可。 进行服务更新时,需要保证被更新的服务所使用的模型与配置的模型名称相同。
只能在BMS中挂载使用,不能被操作系统应用直接访问,需要格式化成文件系统进行访问。 使用场景 如高性能计算、媒体处理、文件共享和内容管理和Web服务等。 说明: 高性能计算:主要是高带宽的需求,用于共享文件存储,比如基因测序、图片渲染这些。 如大数据分析、静态网站托管、在线视频点播、基因测序和智能视频监控等。
配置授权 功能介绍 配置ModelArts授权。若没有授权,ModelArts训练管理、开发环境、数据管理、在线服务等功能将不能正常使用。该API支持管理员给IAM子用户设置委托,支持设置当前用户的访问密钥。调用该API需要在IAM系统里配置Security Administrator权限。
数据history列名。 prefix String 数据格式化时使用的前缀。 instruction_template String 数据格式化时使用的指令模板。 response_template String 数据格式化时使用的回答模板。 lora_alpha int Lora
更新模型服务的单个属性 功能介绍 更新模型服务的单个属性,目前只支持instance_count(更新模型服务实例数量),仅运行中、告警、异常状态下的在线服务可以执行该操作。 调试 您可以在API Explorer中调试该接口,支持自动认证鉴权。API Explorer可以自动生成SDK代码示例,并提供SDK代码示例调试功能。
权限”,单击右上角的“创建自定义策略”,设置策略,单击“确定”。 “策略名称”:设置自定义策略名称,例如:不允许用户使用公共资源池创建。 “策略配置方式”:选择可视化视图或者JSON视图均可。 “策略内容”:拒绝,云服务中搜索“ModelArts”服务并选中,“操作”中查找写操作“modelarts:trainJob
例如下: # model目录下放置label.json文件,此处读取 with open(os.path.join(self.model_path, 'label.json')) as f: self.label = json.load(f) 当使用PyTorch、Sci
出现ModelArts.XXXX类型的报错,表示请求在Dispatcher出现问题而被拦截。 常见报错: 在线服务预测报错ModelArts.4302 在线服务预测报错ModelArts.4206 在线服务预测报错ModelArts.4503 当使用推理的镜像并且出现MR.XXXX类型的错误时
在左侧导航栏中,选择“模型部署”。 在“模型部署”页面,任选以下方式进入模型体验页面。 在“预置服务”页签,单击操作列“在线体验”,进入“模型体验”页面。 在“我的服务”页签,单击操作列“更多 > 在线体验”,进入“模型体验”页面。 在“模型体验”右上角,单击“参数设置”,拖动或直接输入数值配置推理参
部署模型 部署服务 ModelArts支持将模型部署为在线服务、批量服务和边缘服务。 部署为在线服务 部署为批量服务 访问服务 服务部署完成后,针对在线服务和边缘服务,您可以访问并使用服务,针对批量服务,您可以查看其预测结果。 访问在线服务 查看批量服务预测结果
SDK,则需要在本地环境中安装ModelArts SDK,安装后可直接调用ModelArts SDK轻松管理数据集、创建ModelArts训练作业及创建AI应用,并将其部署为在线服务。 ModelArts SDK使用限制 本地ModelArts SDK不支持进行训练作业调测、模型调试和在开发环境中部署本地服务进行调
模型镜像。 服务运维阶段,先利用镜像构建模型,接着部署模型为在线服务,然后可在云监控服务(CES)中获得ModelArts推理在线服务的监控数据,最后可配置告警规则实现实时告警通知。 业务运行阶段,先将业务系统对接在线服务请求,然后进行业务逻辑处理和监控设置。 图1 推理服务的端到端运维流程图
否则该模型无法正常使用AI Gallery工具链服务(微调大师和在线推理服务)。 当托管的是自定义镜像时,上传的模型文件要满足自定义镜像规范,否则该镜像无法正常使用AI Gallery工具链服务(微调大师和在线推理服务)。 当文件状态变成“上传成功”表示数据文件成功上传至AI
示模型可以使用。 步骤三:使用订阅模型部署在线服务 模型订阅成功后,可将此模型部署为在线服务 在展开的版本列表中,单击“部署 > 在线服务”跳转至部署页面。 图2 部署模型 在部署页面,参考如下说明填写关键参数。 “名称”:自定义一个在线服务的名称,也可以使用默认值,此处以“商超商品识别服务”为例。