检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
参数填写完成后,单击“创建”,确认订单信息无误后,单击“确定”跳转至AI应用详情页。 当资产状态变为“运行中”表示AI应用部署完成。在AI应用详情页的“应用”页签,可以在线体验应用。 父主题: 发布和管理AI Gallery中的AI应用
约束限制 创建在线服务时,每秒服务流量限制默认为100次,如果静态benchmark的并发数(parallel-num参数)或动态benchmark的请求频率(request-rate参数)较高,会触发推理平台的流控,请在ModelArts Standard“在线服务”详情页修改服务流量限制。
约束限制 创建在线服务时,每秒服务流量限制默认为100次,若静态benchmark的并发数(parallel-num参数)或动态benchmark的请求频率(request-rate参数)较高,会触发推理平台的流控,请在ModelArts Standard“在线服务”详情页修改服务流量限制。
运行完成的工作流会自动部署为相应的在线服务,您只需要在相应的服务详情页面进行预测即可。 在服务部署节点单击“实例详情”直接跳转进入在线服务详情页,或者在ModelArts管理控制台,选择“模型部署 > 在线服务”,单击生成的在线服务名称,即可进入在线服务详情页。 在服务详情页,选择“预测”页签。 图5 上传预测图片
其他任务类型的模型,其他任务类型的模型被称为自定义模型。但是托管的自定义模型要满足规范才支持使用AI Gallery工具链服务(微调大师、在线推理服务)。 自定义模型的使用流程 托管模型到AI Gallery。 模型基础设置里的“任务类型”选择除“文本问答”和“文本生成”之外的类型。
"application/json" } } ] 将模型部署为在线服务 参考部署为在线服务将模型部署为在线服务。 在线服务创建成功后,您可以在服务详情页查看服务详情。 您可以通过“预测”页签访问在线服务。 父主题: 制作自定义镜像用于推理
存需求增多。 处理方法 在部署或升级在线服务时,选择更大内存规格的计算节点。 图3 选择计算节点规格 运行中服务出现告警时,需要分析是您的代码是否出现漏洞导致内存溢出、是否因为业务使用量太大需要更多的内存。如果因业务原因需要更多内存,请升级在线服务选择更大内存规格的计算节点。 父主题:
模型的端口没有配置,如您在自定义镜像配置文件中修改了端口号,需要在部署模型时,配置对应的端口号,使新的模型重新部署服务。 如何修改默认端口号,请参考使用自定义镜像创建在线服务,如何修改默认端口。 父主题: 服务部署
Llama llama-7b https://huggingface.co/huggyllama/llama-7b 2 llama-13b https://huggingface.co/huggyllama/llama-13b 3 llama-65b https://huggingface
in certificate chain 图1 报错SSL certificate problem 可采取忽略SSL证书验证:使用以下命令来克隆仓库,它将忽略SSL证书验证。 git clone -c http.sslVerify=false https://github.com
登录ModelArts控制台,在自动学习作业列表中,删除正在扣费的自动学习作业。在训练作业列表中,停止因运行自动学习作业而创建的训练作业。在在线服务列表中,停止因运行自动学习作业而创建的服务。操作完成后,ModelArts服务即停止计费。 登录OBS控制台,进入自己创建的OBS桶中
服务预测 服务预测失败 服务预测失败,报错APIG.XXXX 在线服务预测报错ModelArts.4206 在线服务预测报错ModelArts.4302 在线服务预测报错ModelArts.4503 在线服务预测报错MR.0105 Method Not Allowed 请求超时返回Timeout
登录ModelArts控制台,在自动学习作业列表中,删除正在扣费的自动学习作业。在训练作业列表中,停止因运行自动学习作业而创建的训练作业。在在线服务列表中,停止因运行自动学习作业而创建的服务。操作完成后,ModelArts服务即停止计费。 登录OBS控制台,进入自己创建的OBS桶中
总览Workflow 获取Workflow统计信息。 查询Workflow待办事项 获取Workflow待办列表。 在线服务鉴权 计费工作流在线主服务鉴权。 创建在线服务包 计费工作流购买资源。 表2 WorkflowExecution API 说明 获取Execution列表 查询Workflow下的执行记录列表。
将模型部署为实时推理作业 实时推理的部署及使用流程 部署模型为在线服务 访问在线服务支持的认证方式 访问在线服务支持的访问通道 访问在线服务支持的传输协议 父主题: 使用ModelArts Standard部署模型并推理预测
训练预测分析模型 创建自动学习后,将会进行模型的训练,得到预测分析的模型。模型部署步骤将使用预测模型发布在线预测服务。 操作步骤 在新版自动学习页面,单击创建成功的项目名称,查看当前工作流的执行情况。 在“预测分析”节点中,待节点状态由“运行中”变为“运行成功”,即完成了模型的自动训练。
run.sh调用app.py启动服务器,app.py请参考https示例 python app.py 除了按上述要求设置启动命令,您也可以在镜像中自定义启动命令,在创建模型时填写与您镜像中相同的启动命令。 提供的服务可使用HTTPS/HTTP协议和监听的容器端口,使用的协议和端口号请根
数”数量不一致,请刷新重试。 在各模块资源监控页签查看ModelArts监控指标 训练作业:用户在运行训练作业时,可以查看多个计算节点的CPU、GPU、NPU资源使用情况。具体请参见训练资源监控章节。 在线服务:用户将模型部署为在线服务后,可以通过监控功能查看CPU、内存、GPU
服务运维阶段,先利用镜像构建AI应用,接着部署AI应用为在线服务,然后可在云监控服务(CES)中获得ModelArts推理在线服务的监控数据,最后可配置告警规则实现实时告警通知。 业务运行阶段,先将业务系统对接在线服务请求,然后进行业务逻辑处理和监控设置。 图1 推理服务的端到端运维流程图
√ √ https://huggingface.co/meta-llama/Llama-2-13b-chat-hf 6 llama2-70b √ √ √ √ √ https://huggingface.co/meta-llama/Llama-2-70b-hf https://huggingface