检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
该工具链能够高效收集和处理各种格式的数据,满足不同训练和评测任务的需求。通过提供自动化的质量检测和数据清洗能力,对原始数据进行优化,确保其质量和一致性。同时,数据工程工具链还提供强大的数据存储和管理能力,为大模型训练提供高质量的数据支撑。 支持区域: 西南-贵阳一 使用数据工程准备与处理数据集 检测数据集质量
盘古大模型套件在订购时分为模型资产和模型推理资产。 模型资产即盘古系列大模型,用户可以订购盘古基模型、功能模型、专业大模型。 基模型:基模型经过大规模数据的预训练,能够学习并理解多种复杂特征和模式。这些模型可作为各种任务的基础,包括但不限于阅读理解、文本生成和情感分析等,但不具备对话问答能力。
与其他云服务的关系 与对象存储服务的关系 盘古大模型使用对象存储服务(Object Storage Service,简称OBS)存储数据和模型,实现安全、高可靠和低成本的存储需求。 与ModelArts服务的关系 盘古大模型使用ModelArts服务进行算法训练部署,帮助用户快速创建和部署模型。
例如,在图2中有10条评估用例,当前已经评估了8条,剩余2条待评估。 图2 查看评估进展 评估完成后,进入“评估报告”页面,可以查看每条数据的评估结果。 在评估结果中,“预期结果”即为变量值(问题)所预设的期望回答,“生成结果”即模型回复的结果。通过比较“预期结果”与“生成结果”的差异可以判断提示词效果。
@huaweicloud/huaweicloud-sdk-core npm i @huaweicloud/huaweicloud-sdk-pangulargemodels 在线生成SDK代码 API Explorer可根据需要动态生成SDK代码功能,降低您使用SDK的难度,推荐使用。 您可以在API Explor
创建子用户并授权使用盘古 准备训练数据 创建一个新的数据集 创建一个新的数据集,用来管理上传至平台的训练或者评测数据。 创建一个新的数据集 数据集质量检测/数据清洗 对上传的数据进行质量检测,若质量有问题可以进行数据清洗。 检测数据集质量 清洗数据集(可选) 发布数据集 对无质量问题的数据集执行发布操作。
搜索增强 场景介绍 私有化场景下,大模型需要基于现存的私有数据提供服务。通过外挂知识库(Embedding、向量库)方式提供通用的、标准化的文档问答场景。 工程实现 准备知识库。 获取并安装SDK包。 在配置文件(llm.properties)中配置模型信息。 # 盘古模型IAM
搜索增强 场景介绍 私有化场景下,大模型需要基于现存的私有数据提供服务。通过外挂知识库(Embedding、向量库)方式提供通用的、标准化的文档问答场景。 工程实现 准备知识库。 获取并安装SDK包。 在配置文件(llm.properties)中配置模型信息。 # 盘古模型IAM
它从未标记的数据中提取监督信号,属于无监督学习的一个子集。该方法通过创建“预设任务”让模型从数据中学习,从而生成有用的表示,可用于后续任务。它无需额外的人工标签数据,因为监督信号直接从数据本身派生。 有监督学习 有监督学习是机器学习任务的一种。它从有标记的训练数据中推导出预测函
模型评估”将对您之前上传的测试集进行评估。通过查看测试集样本的PPL、BLEU和ROUGE等指标,进行横向(相同训练数据+不同规格的通用模型)或纵向(不同训练数据训练的多个模型版本)对比来判断训练过程是否出现了问题。 人工评测:您可以采用人工评测的方式,参照目标任务构造评测集,通
于支撑安全分析、合规审计、资源跟踪和问题定位等常见应用场景。 用户开通云审计服务并创建、配置追踪器后,CTS可记录用户使用盘古的管理事件和数据事件用于审计。 CTS的详细介绍和开通配置方法,请参见CTS快速入门。 父主题: 安全
目标任务依赖垂域背景知识:通用模型学习到的知识大部分都是来自互联网上的开源数据,如果目标任务本身属于某个领域(如金融、政务、法律、医疗、工业等),需要依赖很深的领域背景知识,那么通用模型可能无法满足这些要求,需要在该领域的数据集上进行微调,以增强模型的泛化能力。 回答的风格或格式有特殊要求
明、表5。 在数据配置中,选择训练数据集、验证数据等参数。 验证数据可选择“从训练数据拆分”和“从已有数据导入”。 从训练数据拆分:取值范围[1%-50%]。设置1%即从训练数据中随机拆分出1%的数据作为验证集,验证集中最多使用100条数据用于模型训练效果评估。数据按比例拆分后,
己的模型。 数据工程套件 数据是大模型训练的基础,为大模型提供了必要的知识和信息。数据工程套件作为盘古大模型服务的重要组成部分,具备数据获取、清洗、配比和管理等功能。该套件能够高效收集和处理各种格式的数据,满足不同训练和评测任务的需求。通过提供自动化的质量检测和数据清洗能力,对原
训练智能客服系统大模型需要考虑哪些方面 根据智能客服场景,建议从以下方面考虑: 根据企业实际服务的场景和积累的数据量,评估是否需要构建行业模型,如电商、金融等。 根据每个客户的金牌客服话术,可以对对话模型进行有监督微调,进一步优化其性能。 根据每个客户的实际对话知识,如帮助文档、
图5 异常的Loss曲线:平缓且保持高位 Loss曲线异常抖动:Loss曲线异常抖动的原因可能是训练数据质量差,比如数据存在噪声或分布不均衡,导致训练不稳定。您可以尝试提升数据质量来解决。 图6 异常的Loss曲线:异常抖动 模型准确率指标介绍 模型准确率:正确预测(标注与预测
的变量值信息。 输入变量值后预览区域会自动组装展示提示词。用户也可以直接选择已创建的变量集填入变量值信息,变量集是一个excel文件,每行数据是需要输入的变量值信息,可以通过“导入”功能进行上传。 图1 预览提示词效果 单击“查看效果”按钮,输出模型回复结果,用户可以根据预览效果调整提示词的文本和变量。
200 表7 流式输出的数据单元 参数 参数类型 描述 data String stream=true时,模型生成的消息以流式形式返回。生成的内容以增量的方式逐步发送回来,每个data字段均包含一部分生成的内容,直到所有data返回,响应结束。 表8 流式输出的数据单元 参数 参数类型
模型生成结果优劣取决与模型能力及提示词质量。其中模型能力的更新需要准备大量的数据及消耗大量的计算资源,而通过提示工程,可以在不对模型能力进行更新的前提下,有效激发模型能力。 “提示词撰写” 和“提示工程”有什么区别 提示词撰写实际上是构建一些问答对数据,用于模型的训练,会更新模型参数,而提示工程不涉及模
优化Token消耗,平台提供了Token计算器工具。Token计算器可以帮助用户在模型训练前评估文本的Token数量,提供费用预估,并优化数据预处理策略。 使用Token计算器的步骤如下: 登录盘古大模型套件平台。 在“服务管理”页面,单击页面右上角“Token计算器”。 在To