检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
调用边缘模型 调用边缘模型的步骤与使用“在线部署”调用模型的步骤相同,具体步骤请参考使用API调用模型。 父主题: 部署为边缘服务
构建的优点是数据丰富度更高,缺点是成本较高。 当您将无监督数据构建为有监督数据时,请尽可能保证数据的多样性。建议将不同文本构建为不同的场景,甚至将同一段文本构建为多个不同的场景。 不同规格的模型支持的长度不同,当您将无监督数据构建为有监督数据时,请确保数据长度符合模型长度限制。 父主题:
面试问题生成 应用场景说明:将面试者的简历信息输入给大模型,基于简历生成面试问题,用于辅助人工面试或实现自动化面试。 父主题: 写作示例
数据量和质量均满足要求,Loss也正常收敛,为什么微调后的效果不好 这种情况可能是由于以下几个原因导致的,建议您依次排查: Prompt设置:请检查您使用的Prompt,对于同一个目标任务,建议在推理阶段使用和训练数据相同或相似的PROMPT,才能发挥出模型的最佳效果。 模型规格
了其他语言、异常符号、乱码等字符。这种情况可能是由于以下几个原因导致的,建议您依次排查: 数据质量:请检查训练数据中是否存在包含异常字符的数据,可以通过规则进行清洗。 训练参数设置:若数据质量存在问题,且因训练参数设置的不合理而导致过拟合,该现象会更加明显。请检查训练参数中的 “
型能力的入口。用户可以通过在“能力调测”页面选择调用基模型或训练后的模型。 训练后的模型需要“在线部署”且状态为“运行中”时,才可以使用本章节提供的方法进行调测,具体步骤请参见部署为在线服务。 文本补全:给定一个提示和一些参数,模型会根据这些信息生成一个或多个预测的补全。例如,让
盘古大模型的安全性主要从以下方面考虑: 数据安全和隐私保护:大模型涉及大量训练数据,这些数据是重要资产。为确保数据安全,需在数据和模型训练的全生命周期内,包括数据提取、加工、传输、训练、推理和删除的各个环节,提供防篡改、数据隐私保护、加密、审计和数据主权保护等机制。在训练和推理过程中,通过数据脱敏、隐私计算
逻辑判断等能力,来理解和回应用户的需求。 例如,需要构建一个企业助理应用,该应用需要具备预定会议室、创建在线文档和查询报销信息等功能。在构建此应用时,需要将预定会议室与创建在线文档等功能的API接口定义为一系列的工具,并通过AI助手,将这些工具与大模型进行绑定。当用户向AI助手提
启用盘古大模型搜索增强能力 大模型在训练时使用的是静态的文本数据集,这些数据集通常是包含了截止到某一时间点的所有数据。因此,对于该时间点之后的信息,大模型可能无法提供。 通过将大模型与盘古搜索结合,可以有效解决数据的时效性问题。当用户提出问题时,模型先通过搜索引擎获取最新的信息,
报错原因:模型训练过程中,训练日志出现“no such file or directory”报错,表示当前数据集格式、数据命名、数据存储路径不满足训练要求。 解决方案:请参考数据格式要求校验数据集格式。 请检查数据集路径是否设置正确。 图2 no such file or directory报错 The
限制。 每个模型请求的最大Token数有所差异,详细请参见模型的基础信息。 模型所支持的训练数据量、数据格式要求请参见《用户指南》“准备盘古大模型训练数据集 > 模型训练所需数据量与数据格式要求”。
准备训练数据 本场景不涉及自监督训练,无需准备自监督数据。 微调数据来源: 需要针对涉及的模块分别构造相关的微调数据。 query改写模块 来源:互联网开源数据集 问答模块 来源一:互联网开源数据集,如政府网站网页、政府在线问答公开数据、政务百科等。 来源二:特定的私域数据,针对于
配置Cache(Java SDK) Cache缓存是一种临时存储数据的方法,它可以把常用的数据保存在内存或者其他设备中,这样当需要访问这些数据时,就不用再去原始的数据源查找,而是直接从缓存中获取,从而节省时间和资源。 对LLM使用缓存: LLM llm = LLMs.of(LLMs
候微调也无法解决所有问题。即使您的目标场景依赖垂域背景知识,微调也并非最佳方案,比如: 场景微调的数据量很少或者数据质量很差:微调对数据量和数据质量有很高的要求,需要使用高质量的数据进行模型训练。 垂域知识问答场景:通用模型本身已经具有在给定的一段或几段段落知识的场景下进行总结回
Caches.of("inMemory") # 更新数据 cache.update("1+1", LLMResp(answer=2)) 查询数据:从缓存中获取数据,需要指定数据的键值对。例如,查找1+1这个问题对应的答案,参考示例如下: # 查找数据 cache_value = cache.lookup("1+1")
或“温度”或“核采样”等参数的设置,适当增大其中一个参数的值,可以提升模型回答的多样性。 数据质量:请检查训练数据中是否存在文本重复的异常数据,可以通过规则进行清洗。 训练参数设置:若数据质量存在问题,且因训练参数设置的不合理而导致过拟合,该现象会更加明显。请检查训练参数中的 “
"target": "是的,我试了 还是不行"} 数据质量:若数据格式没有问题,仍然发现模型效果不好,您可以根据具体问题针对性的提升您的数据质量。比如,随着对话轮数的增加,模型出现了遗忘,可以检查构造的训练数据中轮数是否普遍较少,建议根据实际情况增加数据中的对话轮数。 父主题: 典型训练问题和优化策略
概述 盘古大模型整合华为云强大的计算和数据资源,将先进的AI算法集成在预训练大模型中,打造出具有深度语义理解与生成能力的人工智能大语言模型。可进行对话互动、回答问题、协助创作。 华为云盘古大模型,以下功能支持API调用。 表1 API清单 API 功能 NLP-文本补全 给定一个
调用盘古大模型API 用户可以通过API调用盘古大模型服务的基模型以及用户训练后的模型。训练后的模型只有在使用“在线部署”功能时,才可以使用本章节提供的方法进行调用。本章节将介绍如何使用Postman调用API,仅供测试使用。 前提条件 使用API调用模型前,请先完成盘古大模型服务订购和开通操作。
为至关重要。不同模型在预训练、微调、模型评估、模型压缩和在线推理等方面的支持程度各不相同,开发者应根据自身需求选择合适的模型。以下是各个模型支持的具体操作: 表1 模型支持的操作 模型 预训练 微调 模型评估 模型压缩 在线推理 盘古-NLP-N1-基础功能模型-32K - √ -