检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
盘古-NLP-BI专业大模型-4K 4096 基于NLP-N2-基础功能模型运用特定专业代码数据训练后的BI专业大模型,具有4K上下文能力。 盘古-NLP-BI专业大模型-32K 32768 基于NLP-N2-基础功能模型运用特定专业代码数据训练后的BI专业大模型,具有32K上下文能力。 盘古-NLP-N2单场景模型-4K
为至关重要。不同模型在预训练、微调、模型评估、模型压缩和在线推理等方面的支持程度各不相同,开发者应根据自身需求选择合适的模型。以下是各个模型支持的具体操作: 表1 模型支持的操作 模型 预训练 微调 模型评估 模型压缩 在线推理 盘古-NLP-N1-基础功能模型-32K - √ -
调用盘古大模型API 用户可以通过API调用盘古大模型服务的基模型以及用户训练后的模型。训练后的模型只有在使用“在线部署”功能时,才可以使用本章节提供的方法进行调用。本章节将介绍如何使用Postman调用API,仅供测试使用。 前提条件 使用API调用模型前,请先完成盘古大模型服务订购和开通操作。
配置知识库 大模型在进行训练时,使用的是通用的数据集,这些数据集没有包含特定行业的数据。通过知识库功能,用户可以将领域知识上传到知识库中,向大模型提问时,大模型将会结合知识库中的内容进行回答,解决特定领域问题回答不准的现象。 登录盘古大模型套件平台。 在左侧导航栏中选择“应用开发
是众多自然语言处理下游任务的基础模型。学术界和工业界的实践证明,随着模型参数规模的增加,自然语言处理下游任务的效果显著提升,这得益于海量数据、大量算力以及深度学习的飞跃发展。 基于自然语言处理大模型的预训练模型,可以根据业务需求开发出诸如营销文案生成、阅读理解、智能对话和代码生成等应用功能。
图1 模型评估列表页面 填写评估任务所需的评估配置、评估数据和基本信息。 图2 创建评估任务 评估配置: 待评估模型:支持选择多个模型版本同时评估,最多选择5个。待评估模型必须符合前提条件。 评估资源:依据选择的模型数据自动给出所需的评估资源。 打分模式:当前版本打分模式仅支持
配置盘古访问授权 盘古大模型服务使用对象存储服务(Object Storage Service,简称OBS)进行数据存储,实现安全、高可靠和低成本的存储需求。因此,为了能够正常的存储数据、训练模型,需要用户配置盘古访问OBS的权限。 使用主账号登录盘古大模型套件平台。 在左侧菜单选择“平台管理
json解析报错 服务端返回的数据格式不符合json格式,导致sdk侧解析json数据报错。 服务端返回的json数据不符合json反序列化的规则,和sdk定义的数据结构不一致,导致反序列化失败。 sdk json数据解析问题。 建议排查服务端返回的数据是否和服务SDK设计的结构、字段一致。
'EQUAL-TO'}]}}"} 数据量级要求:本场景使用了30000条数据进行微调。 类似场景需要的微调数据量视具体情况而定,从经验上来说,若实际场景相对简单和通用,使用几千条数据即可;若场景复杂或专业,则需要上万条数据。 数据质量要求: 保证数据的分布和目标需要与实际场景匹配。 保证数据的覆盖度:数
测试集质量:请检查测试集的目标任务和分布与实际场景是否一致,质量较差的测试集无法反映模型的真实结果。 数据质量:请检查训练数据的质量,若训练样本和目标任务不一致或者分布差异较大,则会加剧该现象。此外,若可预见实际场景会不断发生变化,建议您定期更新训练数据,对模型进行微调更新。 父主题: 典型训练问题和优化策略
合。请检查训练参数中的 “训练轮次”或“学习率”等参数的设置,适当降低这些参数的值,降低过拟合的风险。 数据质量:请检查训练数据的质量,若训练样本出现了大量重复数据,或者数据多样性很差,则会加剧该现象。 父主题: 典型训练问题和优化策略
客服。这不仅增加了企业的运营成本,也影响了用户体验。盘古大模型的引入为这一问题提供了有效解决方案。 盘古大模型通过将客户知识数据转换为向量并存储在向量数据库中,利用先进的自然语言处理技术对用户输入的文本进行深度分析和理解。它能够精准识别用户的意图和需求,即使是复杂或模糊的查询,也
通过一站式流程,完成从数据集准备、模型训练、压缩、部署到调用和迁移,全面掌握盘古大模型的开发过程。同时,结合应用开发的提示词工程、Agent开发以及盘古应用开发SDK,您将能够高效构建智能应用,充分释放盘古大模型的潜力,为业务创新提供强大支持。 数据工程 使用数据工程准备与处理数据集 模型开发
部署盘古大模型 部署为在线服务 部署为边缘服务
模型规格:不同规格的模型支持的长度不同,若目标任务本身需要生成的长度已经超过模型上限,建议您替换可支持更长长度的模型。 数据质量:请检查训练数据中是否存在包含异常截断的数据,可以通过规则进行清洗。 父主题: 典型训练问题和优化策略
如果指标低是由于提示词(prompt)设置不合理,可以通过在模型训练阶段扩大训练集和验证集来优化模型,从而改善评估结果。另外,还可以将评估数据集设计得更接近训练集的数据,以提升评估结果的准确性。 父主题: 评估盘古大模型
选中需要评估的候选提示词,单击左上角“创建评估”按钮,跳转评估任务创建页面。 图2 创建评估 选择评估使用的变量数据集和评估方法。 数据集:根据选择的数据集,将待评估的提示词和数据集中的变量自动组装成完整的提示词,输入模型生成结果。 评估方法:根据选择的评估方法,对模型生成结果和预期结果进行比较,并根据算法给出相应的得分。
模型支持的区域 区域是一个地理区域的概念。我国地域面积广大,由于带宽的原因,无法仅依靠一个数据中心为全国客户提供服务。因此,根据地理区域的不同将全国划分成不同的支持区域。 盘古大模型当前仅支持西南-贵阳一区域。 图1 盘古大模型服务区域 父主题: 模型能力与规格
@huaweicloud/huaweicloud-sdk-core npm i @huaweicloud/huaweicloud-sdk-pangulargemodels 在线生成SDK代码 API Explorer可根据需要动态生成SDK代码功能,降低您使用SDK的难度,推荐使用。 您可以在API Explor
为了帮助用户更好地管理和优化Token消耗,平台提供了Token计算器工具。Token计算器可以帮助用户在模型推理前评估文本的Token数量,提供费用预估,并优化数据预处理策略。 URI POST /v1/{project_id}/deployments/{deployment_id}/caltokens