检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
准备代码 软件配套版本 本方案支持的软件配套版本和依赖包获取地址如表1所示。 表1 软件配套版本和获取地址 软件名称 说明 下载地址 AscendCloud-6.3.910-xxx.zip 说明: 软件包名称中的xxx表示时间戳。 包含了本教程中使用到的推理部署代码和推理评测代码
在Notebook中通过Dockerfile从0制作自定义镜像 场景说明 本案例将基于ModelArts提供的MindSpore预置镜像,并借助ModelArts命令行工具(请参考ma-cli镜像构建命令介绍),通过加载镜像构建模板并修改Dockerfile,构建出一个新镜像,最后注册后在Notebook使用。
SDXL基于Standard适配PyTorch NPU的LoRA训练指导(6.3.908) Stable Diffusion(简称SD)是一种基于扩散过程的图像生成模型,应用于文生图场景,能够帮助用户生成图像。SDXL LoRA是指在已经训练好的SDXL模型基础上,使用新的数据集进行LoRA微调。
SDXL基于Standard适配PyTorch NPU的Finetune训练指导(6.3.905) Stable Diffusion(简称SD)是一种基于扩散过程的图像生成模型,应用于文生图场景,能够帮助用户生成图像。SDXL Finetune是指在已经训练好的SDXL模型基础上
VS Code连接后长时间未操作,连接自动断开 问题现象 VS Code SSH连接后,长时间未操作,窗口未关闭,再次使用发现VS Code在重连环境,无弹窗报错。左下角显示如下图: 查看VS Code Remote-SSH日志发现,连接在大约2小时后断开了: 原因分析 用户SS
准备资源 创建专属资源池 本文档中的模型运行环境是ModelArts Standard,用户需要购买专属资源池,具体步骤请参考创建资源池。 资源规格要求: 计算规格:用户可参考表2。 硬盘空间:至少200GB。 昇腾资源规格: Ascend: 1*ascend-snt9b表示昇腾单卡。
推理精度测试 本章节介绍如何进行推理精度测试,数据集是ceval_gen、mmlu_gen、math_gen、gsm8k_gen、humaneval_gen。 前提条件 确保容器可以访问公网。 Step1 配置精度测试环境 获取精度测试代码。精度测试代码存放在代码包AscendC
推理精度测试 本章节介绍如何进行推理精度测试,请在Notebook的JupyterLab中另起一个Terminal,进行推理精度测试。 Step1 配置精度测试环境 获取精度测试代码。精度测试代码存放在代码包AscendCloud-LLM的llm_tools/llm_evaluation目录中,代码目录结构如下。
服务韧性 韧性特指安全韧性,即云服务受攻击后的韧性,不含可靠性、可用性。本章主要阐述ModelArts服务受入侵的检测响应能力、防抖动的能力、域名合理使用、内容安全检测等能力。 安全防护套件覆盖和使用堡垒机,增强入侵检测和防御能力 ModelArts服务部署主机层、应用层、网络层
VS Code连接后长时间未操作,连接自动断开 问题现象 VS Code SSH连接后,长时间未操作,窗口未关闭,再次使用发现VS Code在重连环境,无弹窗报错。左下角显示如下图: 查看VS Code Remote-SSH日志发现,连接在大约2小时后断开了: 原因分析 用户SS
推理精度测试 本章节介绍如何进行推理精度测试,数据集是ceval_gen、mmlu_gen、math_gen、gsm8k_gen、humaneval_gen。 前提条件 确保容器可以访问公网。 Step1 配置精度测试环境 获取精度测试代码。精度测试代码存放在代码包AscendC
推理精度测试 本章节介绍如何使用opencompass工具开展语言模型的推理精度测试,数据集是ceval_gen、mmlu_gen、math_gen、gsm8k_gen、humaneval_gen。 约束限制 确保容器可以访问公网。 当前的精度测试仅适用于语言模型精度验证,不适用
推理精度测试 本章节介绍如何进行推理精度测试,请在Notebook的JupyterLab中另起一个Terminal,进行推理精度测试。 Step1 配置精度测试环境 获取精度测试代码。精度测试代码存放在代码包AscendCloud-LLM的llm_tools/llm_evalua
线下容器镜像构建及调试 镜像构建 导出conda环境 首先拉起线下的容器镜像: # run on terminal docker run -ti ${your_image:tag} 在容器中输入如下命令,得到pytorch.tar.gz: # run on container #
推理精度测试 本章节介绍如何进行推理精度测试,数据集是ceval_gen、mmlu_gen、math_gen、gsm8k_gen、humaneval_gen。 前提条件 确保容器可以访问公网。 Step1 配置精度测试环境 获取精度测试代码。精度测试代码存放在代码包AscendC
推理精度测试 本章节介绍如何进行推理精度测试,请在Notebook的JupyterLab中另起一个Terminal,进行推理精度测试。 Step1 配置精度测试环境 获取精度测试代码。精度测试代码存放在代码包AscendCloud-LLM的llm_tools/llm_evalua
Open-Sora 1.0基于DevServer适配PyTorch NPU训练指导(6.3.905) 本文档主要介绍如何在ModelArts Lite DevServer上,使用PyTorch_npu+华为自研Ascend Snt9B硬件,完成Open-Sora训练和推理。 资源规格要求
控制采样的随机性的浮点数。较低的值使模型更加确定性,较高的值使模型更加随机。0表示贪婪采样。 stop 否 None None/Str/List 用于停止生成的字符串列表。返回的输出将不包含停止字符串。 例如:["你","好"],生成文本时遇到"你"或者"好"将停止文本生成。 stream 否 False Bool
SD1.5&SDXL ComfyUI、WebUI、Diffusers套件适配PyTorch NPU的推理指导(6.3.909) 本文档主要介绍如何在DevServer环境中部署Stable Diffusion模型对应SD1.5和SDXL的ComfyUI、Webui和Diffusers框架,使用NPU卡进行推理。
Notebook的自定义镜像制作方法 用户在使用ModelArts开发环境时,经常需要对开发环境进行一些改造,如安装、升级或卸载一些包。但是某些包的安装升级需要root权限,运行中的Notebook实例中无root权限,所以在Notebook实例中安装需要root权限的软件,目前