检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
提供图像、文本、音频、视频等多种格式数据的预览,帮助用户识别数据质量。 提供对数据进行多维筛选的能力,用户可以根据样本属性、标注信息等进行样本筛选。 提供12+标注工具,方便用户进行精细化、场景化和专业化的数据标注。
property 否 LabelProperty object 标签基本属性键值对,如颜色、快捷键等。 type 否 Integer 标签类型。
property 否 LabelProperty object 标签基本属性键值对,如颜色、快捷键等。 type 否 Integer 标签类型。
property 否 LabelProperty object 标签基本属性键值对,如颜色、快捷键等。 type 否 Integer 标签类型。
只支持验证集的数据格式为图片。 目前,仅如下常用框架的训练脚本支持添加评估代码。 TF-1.13.1-python3.6 TF-2.1.0-python3.6 PyTorch-1.4.0-python3.6 下文将介绍如何在训练中使用评估代码。
图3 成功构建镜像 如果推理需要使用NPU加速图片预处理,适配了llava-1.5模型,启动时需要设置export ENABLE_USE_DVPP=1,需要安装torchvision_npu,可放到镜像制作脚本.
图4 成功构建镜像 如果推理需要使用NPU加速图片预处理,适配了llava-1.5模型,启动时需要设置export ENABLE_USE_DVPP=1,需要安装torchvision_npu,可放到镜像制作脚本.
图解ModelArts 初识ModelArts 初识Workflow
仅支持预览大小不超过10MB、格式为文本类或图片类的文件。 下载文件 在数据集详情页,选择“数据集文件”页签。单击操作列的“下载”,选择保存路径单击“确认”,即可下载文件到本地。 删除文件 在数据集详情页,选择“数据集文件”页签。
JupyterLab是一个交互式的开发环境,是Jupyter Notebook的下一代产品,可以使用它编写Notebook、操作终端、编辑Markdown文本、打开交互模式、查看csv文件及图片等功能。 父主题: Standard功能介绍
# 下载代码 git clone https://gitee.com/mindspore/models.git -b v1.5.0 图2 下载后的模型包文件 下载花卉识别数据集。 本样例使用的数据集为类别数为五类的花卉识别数据集。
导入为目录时,目前仅支持数据集类型为图片分类、物体检测、文本分类、声音分类。 import_type Integer 导入方式。可选值如下: 0:目录导入 1:按manifest文件导入 imported_sample_count Long 已导入的样本数量。
单幅图像示例 如果您的输入仅包含一张图片,则可以使用单个占位符<image>来指示应在对话中插入图像的位置。
仅支持预览大小不超过10MB、格式为文本类或图片类的文件。 下载文件 在模型详情页,选择“模型文件”页签。单击操作列的“下载”,即可下载文件到本地。 删除文件 在模型详情页,选择“模型文件”页签。单击操作列的“删除”,确认后即可将已经托管的文件从AI Gallery仓库中删除。
表9 LabelProperty 参数 参数类型 描述 @modelarts:color String 内置属性:标签展示的颜色,为色彩的16进制代码,默认为空。例如:“#FFFFF0”。
- 尺寸要求 超分前产生的图片尺寸要求: 512*512 720*720 1080 *1080 1920*1920 (shape过大可能导致性能下降) - 父主题: GPU推理业务迁移至昇腾的通用指导
导入为目录时,目前仅支持数据集类型为图片分类、物体检测、文本分类、声音分类。 import_type Integer 导入方式。可选值如下: 0:目录导入 1:按manifest文件导入 imported_sample_count Long 已导入的样本数量。
/docs/CLIP.png图片是一张图表,因此结果值和第一个文本"a diagram"吻合,结果值会接近[[1., 0., 0.]]。 Step8 精度评估 关闭数据集shuffle,保证训练数据一致。
表9 LabelProperty 参数 参数类型 描述 @modelarts:color String 内置属性:标签展示的颜色,为色彩的16进制代码,默认为空。例如:“#FFFFF0”。
文生图模型训练推理 FlUX.1基于Lite Server适配PyTorch NPU推理指导(6.3.912) FLUX.1基于DevSever适配PyTorch NPU Finetune&Lora训练指导(6.3.911) Hunyuan-DiT基于Lite Server部署适配