检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
取模转换 概述 “取模转换”算子,对整数字段取模,生成新字段。 输入与输出 输入:整数字段 输出:模数字段 参数说明 表1 算子参数说明 参数 含义 类型 是否必填 默认值 取模字段名 配置取模运算信息: 输入字段名:配置输入字段名,需填写上一个转换步骤生成的字段名。 输出字段名:配置输出字段名。
基于Kafka的Word Count数据流统计案例 应用场景 Kafka是一个分布式的消息发布-订阅系统。它采用独特的设计提供了类似JMS的特性,主要用于处理活跃的流式数据。 Kafka有很多适用的场景:消息队列、行为跟踪、运维数据监控、日志收集、流处理、事件溯源、持久化日志等。
转换函数 cast转换函数 HetuEngine会将数字和字符值隐式转换成正确的类型。HetuEngine不会把字符和数字类型相互转换。例如,一个查询期望得到一个varchar类型的值,HetuEngine不会自动将bigint类型的值转换为varchar类型。 如果有必要,可以将值显式转换为指定类型。
在spark-beeline中执行命令,例如在obs://mrs-word001/table/目录中创建表test。 create table test(id int) location 'obs://mrs-word001/table/'; 执行如下命令查询所有表,返回结果中存在表test,即表示访问OBS成功。
obs://OBS并行文件系统名称/路径 例如,执行以下命令访问“mrs-word001”并行文件系统,返回文件列表即表示访问OBS成功,如图1所示: hadoop fs -ls obs://mrs-word001/ 图1 Hadoop验证返回文件列表 使用以下命令上传客户端节点“/opt/test
在spark-beeline中访问OBS,例如在“obs://mrs-word001/table/”目录中创建表“test”。 create table test(id int) location 'obs://mrs-word001/table/'; 执行如下命令查询所有表,返回结果中存在表test,即表示访问OBS成功。
Fields("word")); 拓扑的提交部分需要修改,Storm的提交示例如下: Config conf = new Config(); conf.setNumWorkers(3); StormSubmitter.submitTopology("word-count",
CSV文件输入:将文件的每一行按指定分隔符转换成多个输入字段。 固定宽度文件输入:将文件的每一行,按可配置长度的字符或字节,转换成多个输入字段。 表输入:将关系型数据库表的指定列按顺序转换成同等数量的输入字段。 HBase输入:将HBase表的指定列转换成同等数量的输入字段。 HTML输入
HCatalog应用 Hive是一个开源的,建立在Hadoop上的数据仓库框架,提供类似SQL的HQL语言操作结构化数据,其基本原理是将HQL语言自动转换成Mapreduce任务或Spark任务,从而完成对Hadoop集群中存储的海量数据进行查询和分析。 Hive主要特点如下: 通过HQL语言
(String word : words) { word = word.trim(); if (!word.isEmpty()) { word = word.toLowerCase();
CSV文件输入:将文件的每一行按指定分隔符转换成多个输入字段。 固定宽度文件输入:将文件的每一行,按可配置长度的字符或字节,转换成多个输入字段。 表输入:将关系型数据库表的指定列按顺序转换成同等数量的输入字段。 HBase输入:将HBase表的指定列转换成同等数量的输入字段。 HTML输入
(String word : words) { word = word.trim(); if (!word.isEmpty()) { word = word.toLowerCase();
(String word : words) { word = word.trim(); if (!word.isEmpty()) { word = word.toLowerCase();
Exception { String[] word = s.split(","); return new Tuple3<>(word[0], word[1], word[2]); } });
Hive简介 Hive是一个开源的,建立在Hadoop上的数据仓库框架,提供类似SQL的HQL语言操作结构化数据,其基本原理是将HQL语言自动转换成Mapreduce任务或Spark任务,从而完成对Hadoop集群中存储的海量数据进行查询和分析。 Hive主要特点如下: 通过HQL语言
Hive是一个开源的,建立在Hadoop上的数据仓库框架,提供类似SQL的HiveQL语言操作结构化数据,其基本原理是将HiveQL语言自动转换成MapReduce任务或Spark任务,从而完成对Hadoop集群中存储的海量数据进行查询和分析。 Hive主要特点如下: 通过HiveQ
Hive简介 Hive是一个开源的,建立在Hadoop上的数据仓库框架,提供类似SQL的HQL语言操作结构化数据,其基本原理是将HQL语言自动转换成MapReduce任务或Spark任务,从而完成对Hadoop集群中存储的海量数据进行查询和分析。 Hive主要特点如下: 通过HQL语言
Hive介绍 Hive是一个开源的,建立在Hadoop上的数据仓库框架,提供类似SQL的HQL语言操作结构化数据,其基本原理是将HQL语言自动转换成Mapreduce任务或Spark任务,从而完成对Hadoop集群中存储的海量数据进行查询和分析。 Hive主要特点如下: 通过HQL语言
Hive介绍 Hive是一个开源的,建立在Hadoop上的数据仓库框架,提供类似SQL的HQL语言操作结构化数据,其基本原理是将HQL语言自动转换成MapReduce任务或Spark任务,从而完成对Hadoop集群中存储的海量数据进行查询和分析。 Hive主要特点如下: 通过HQL语言
JDBC应用 Hive是一个开源的,建立在Hadoop上的数据仓库框架,提供类似SQL的HQL语言操作结构化数据,其基本原理是将HQL语言自动转换成Mapreduce任务或Spark任务,从而完成对Hadoop集群中存储的海量数据进行查询和分析。 Hive主要特点如下: 通过HQL语言