检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
创建多模板流程说明 流程 说明 详细指导 上传模板图片 在使用多模板工作流开发应用之前,需要上传模板图片,明确以哪些图片作为模板训练文字识别模型。 上传模板图片 定义预处理 上传模板图片后,需要对模板图片进行预处理,保留图片的关键内容,去掉冗余部分,保持图片内容清晰可见,保证模型识别的准确性。
本样例选择“模板类型”为“票证”。 单击“上传图片”区域,上传提前在本地准备好的用于制作模板的图片。 单击上传图片右侧的,更改模板名称为“保险单”。 图6 模板1 单击添加模板图标,配置第二个模板信息。 本样例选择“模板类型”为“票证”。 单击“上传图片”区域,上传提前在本地准备好的用于制作模板的图片。 单击上传图片右侧的,更改模板名称为“增值税”。
工作流介绍 工作流简介 功能介绍 支持上传多种刹车盘图片数据,构建刹车盘的识别模型,用于快速、准确的识别刹车盘类型。 支持一键部署模型和技能到边缘设备Atlas 500,并在华为HiLens平台上进行模型管理和技能管理。 适用场景 汽车改装等场景。 优势 模型精度高,识别速度快;更新模型简便。
据。控制台上传无需工具下载或多余配置,在少量数据上传时,更加便捷高效。 如果您的数据量较大或数据文件较多,建议选择OBS Browser+或obsutil工具上传。OBS Browser+是一个比较常用的图形化工具,支持完善的桶管理和对象管理操作。推荐使用此工具创建桶或上传对象。
数据。 训练模型 图1 模型训练 在“模型训练”页面配置训练参数,开始训练模型。 在“参数配置”填写“学习率”、“训练轮次”和“分批训练样本数”。 “学习率”用来控制模型的学习速度,范围为(0,1]。 “训练轮次”指模型训练中遍历数据集的次数。 “分批训练样本数”又叫批尺寸(Batch
部署服务 评估模板应用后,就可以部署多模板应用至文字识别开发套件中,开发属于自己的文字识别应用,此应用用于识别自己所上传的图片属于哪种模板以及识别图片中的文字。 前提条件 已在文字识别套件控制台选择“多模板分类工作流”新建应用,并完成评估模板步骤,详情请见评估应用。 操作步骤 在
成功新建应用,进入“应用资产”页面。 步骤3:上传模板图片 在“应用资产”页面单击模板列表下方的“创建模板”。 进入“应用开发>上传模板图片”页面。 图4 创建模板 输入“模板名称”,并选择“模板类型”。 本样例“模板类型”选择“票证”。 单击“上传图片”区域,上传提前在本地准备好的一张身份证图片作为模板。 图5 上传模板图片
可训练技能模板介绍 HiLens安全帽检测技能 功能介绍 面向智慧园区的安全帽检测技能,支持自主上传图片数据,构建高精度安全帽检测模型,快速开发安全帽检测技能,实现园区自动检测工人未戴安全帽的行为。 适用场景 智慧园区。 优势 模型精度高,检测速度快,更新模型简便。 端云协同推理
开发应用时需要上传模板图片,明确以哪张图片作为模板训练文字识别模型。 上传图片的要求如表1所示。 表1 文字识别套件数据集要求 工作流 数据集要求 单模板工作流 保证图片质量:不能有损坏的图片;目前支持的格式包括JPG、JPEG、PNG、BMP。 图片最大边不大于4096px,
已发布北京四区域 文字识别套件 OBS 2.0支持通用单模板工作流 文字识别套件提供单模板开发的工作流,通过工作流指引构建文字识别模板,识别单个板式图片中的文字,实现自定义结构化信息识别。 已发布北京四区域 通用单模板工作流 OBS 2.0支持多模板分类工作流 文字识别套件提供多模板分类器
的流程自动化,只需要客户自己上传标注图片,就可以在线完成模型训练、评估、发布。 图3 零售场景 物流场景 物流场景需要处理各种格式的票据图片,用户可以通过简单的标注生成自己的专属模板,实现关键字段的自动识别和提取。 特点:对各种格式的票据图片,可制作模板实现关键字段的自动识别和提取。
检查是否存在训练数据过少的情况,建议每个类别的图片量不少于100个,如果低于这个量级建议扩充。 检查不同标签的样本数是否均衡,建议不同标签的样本数量级相同,并尽量接近,如果有的类别数据量很高,有的类别数据量较低,会影响模型整体的识别效果。 如果分割效果不好,建议检测图片标注,标注质量的好坏直接影响模型训练图像分割效果的好坏。
检查是否存在训练数据过少的情况,建议每个类别的图片量不少于100个,如果低于这个量级建议扩充。 检查不同标签的样本数是否均衡,建议不同标签的样本数量级相同,并尽量接近,如果有的类别数据量很高,有的类别数据量较低,会影响模型整体的识别效果。 选择适当的学习率和训练轮次。 通过详细评估中的错误识别示例,有针对性地扩充训练数据。
检查是否存在训练数据过少的情况,建议每个类别的图片量不少于100个,如果低于这个量级建议扩充。 检查不同标签的样本数是否均衡,建议不同标签的样本数量级相同,并尽量接近,如果有的类别数据量很高,有的类别数据量较低,会影响模型整体的识别效果。 选择适当的学习率和训练轮次。 通过详细评估中的错误识别示例,有针对性地扩充训练数据。
步骤4:创建SKU 在“SKU创建”页面,单击“批量上传SKU”。 弹出“批量上传SKU”对话框。 在“批量上传SKU”对话框中,按表3填写信息,然后单击“确定”。 页面会显示“SKU名称”和每个SKU的“数据量”。 图3 批量上传SKU 表3 批量上传SKU参数说明 参数 说明 推荐填写
检查是否存在训练数据过少的情况,建议每个类别的图片量不少于100个,如果低于这个量级建议扩充。 检查不同标签的样本数是否均衡,建议不同标签的样本数量级相同,并尽量接近,如果有的类别数据量很高,有的类别数据量较低,会影响模型整体的识别效果。 选择适当的学习率和训练轮次。 通过详细评估中的错误识别示例,有针对性地扩充训练数据。
检查是否存在训练数据过少的情况,建议每个类别的图片量不少于100个,如果低于这个量级建议扩充。 检查不同标签的样本数是否均衡,建议不同标签的样本数量级相同,并尽量接近,如果有的类别数据量很高,有的类别数据量较低,会影响模型整体的识别效果。 选择适当的学习率和训练轮次。 通过详细评估中的错误识别示例,有针对性地扩充训练数据。
检查是否存在训练数据过少的情况,建议每个类别的图片量不少于100个,如果低于这个量级建议扩充。 检查不同标签的样本数是否均衡,建议不同标签的样本数量级相同,并尽量接近,如果有的类别数据量很高,有的类别数据量较低,会影响模型整体的识别效果。 选择适当的学习率和训练轮次。 通过详细评估中的错误识别示例,有针对性地扩充训练数据。
检查是否存在训练数据过少的情况,建议每个类别的图片量不少于100个,如果低于这个量级建议扩充。 检查不同标签的样本数是否均衡,建议不同标签的样本数量级相同,并尽量接近,如果有的类别数据量很高,有的类别数据量较低,会影响模型整体的识别效果。 选择适当的学习率和训练轮次。 通过详细评估中的错误识别示例,有针对性地扩充训练数据。
部署服务 评估模型后,就可以部署服务,开发属于自己的零售商品分类应用,此应用用于识别自己所上传的商品图片,也可以直接调用对应的API和SDK识别。 前提条件 已在视觉套件控制台选择“零售商品识别工作流”新建应用,并评估模型,详情请见评估模型。 由于部署服务涉及ModelArts功能,需消耗资源,要确保账户未欠费。