检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
查询处理任务列表 功能介绍 查询处理任务列表,包括“特征分析”任务和“数据处理”两大类任务。可通过指定“task_type”参数来单独查询某类任务的列表。 “特征分析”是指基于图片或目标框对图片的各项特征,如模糊度、亮度进行分析,并绘制可视化曲线,帮助处理数据集。 “数据处理”是
已在云监控页面设置告警规则,具体操作请参见设置告警规则。 在线服务已正常运行一段时间(约10分钟)。 对于新创建的在线服务,需要等待一段时间,才能查看上报的监控数据和监控视图。 故障、删除状态的在线服务,无法在云监控中查看其监控指标。当在线服务再次启动或恢复后,即可正常查看。 对接云监控之前,
SampleLabels objects 视频在线服务推理结果。 service_id String 在线服务ID。 service_name String 在线服务名称。 service_resource String 用户绑定的在线服务资源ID。 total_sample_count
数据集版本不合格 出现此问题时,表示数据集版本发布成功,但是不满足自动学习训练作业要求,因此出现数据集版本不合格的错误提示。 标注信息不满足训练要求 针对不同类型的自动学习项目,训练作业对数据集的要求如下。 图像分类:用于训练的图片,至少有2种以上的分类(即2种以上的标签),每种分类的图片数不少于5张。
使用大模型在ModelArts Standard创建AI应用部署在线服务 背景说明 目前大模型的参数量已经达到千亿甚至万亿,随之大模型的体积也越来越大。千亿参数大模型的体积超过200G,在版本管理、生产部署上对平台系统产生了新的要求。例如:导入AI应用时,需要支持动态调整租户存储
在线服务运行中但是预测失败时,如何排查报错是不是模型原因导致的 问题现象 在线服务启动后,当在线服务进入到“运行中”状态后,进行预测,预测请求发出后,收到的响应不符合预期,无法判断是不是模型的问题导致的不符合预期。 原因分析 在线服务启动后,ModelArts提供两种方式的预测:
okenization_chatglm.py 。 271行要添加注释,修改后如图1所示。 图1 修改ChatGLMv3-6B tokenizer文件(1) 291至300行要修改,修改后如图2所示。 图2 修改ChatGLMv3-6B tokenizer文件(2) Qwen系列
okenization_chatglm.py 。 271行要添加注释,修改后如图1所示。 图1 修改ChatGLMv3-6B tokenizer文件(1) 291至300行要修改,修改后如图2所示。 图2 修改ChatGLMv3-6B tokenizer文件(2) Qwen系列
XXX,表示模型中没有导入对应依赖模块。 处理方法 依赖模块没有导入,需要您在模型推理代码中导入缺失依赖模块。 例如您的模型是Pytorch框架,部署为在线服务时出现告警:ModuleNotFoundError: No module named ‘model_service.tfserving
通过Token认证的方式访问在线服务 通过AK/SK认证的方式访问在线服务 通过APP认证的方式访问在线服务 父主题: 访问在线服务支持的访问通道
同步状态解决。 步骤三:使用订阅模型部署在线服务 模型订阅成功后,可将此模型部署为在线服务。 在展开的版本列表中,单击“部署 > 在线服务”跳转至部署页面。 图5 部署模型 在部署页面,参考如下说明填写关键参数。 “名称”:自定义一个在线服务的名称,也可以使用默认值,此处以“商超商品识别服务”为例。
使用自动分组智能标注作业 为了提升智能标注算法精度,可以均衡标注多个类别,有助于提升智能标注算法精度。ModelArts内置了分组算法,您可以针对您选中的数据,执行自动分组,提升您的数据标注效率。 自动分组可以理解为数据标注的预处理,先使用聚类算法对未标注图片进行聚类,再根据聚类
zer文件,需要修改代码。修改文件chatglm4-9b/tokenization_chatglm.py 。 文件最后几处代码中需要修改,具体位置可根据上下文代码信息进行查找,修改后如图所示。 图3 修改ChatGLMv4-9B tokenizer文件 图4 修改ChatGLMv4-9B
单击“确定”,完成DNS内网域名的创建。 VPC访问在线服务 通过VPC访问通道访问在线服务,API如下: https://{DNS内网域名}/{URL} DNS内网域名:设置的内网域名。您还可以通过在线服务列表页,单击“VPC访问通道”,打开弹出框,查看“访问域名”。 URL:在线服务的URL为服务详情页
根据提示完成身份验证,下载密钥,并妥善保管。 获取在线服务信息 在调用接口时,需获取在线服务的调用地址,以及在线服务的输入参数信息。步骤如下: 登录ModelArts管理控制台,在左侧导航栏中选择“模型部署 > 在线服务”,默认进入“在线服务”列表。 单击目标服务名称,进入服务详情页面。 在“在线服务”的详情页面
zer文件,需要修改代码。修改文件chatglm4-9b/tokenization_chatglm.py 。 文件最后几处代码中需要修改,具体位置可根据上下文代码信息进行查找,修改后如图所示。 图3 修改ChatGLMv4-9B tokenizer文件 图4 修改ChatGLMv4-9B
向数据传输。 前提条件 在线服务部署时需选择“升级为WebSocket”。 在线服务中的模型导入选择的镜像需支持WebSocket协议。 约束与限制 WebSocket协议只支持部署在线服务。 只支持自定义镜像导入模型部署的在线服务。 调用API访问在线服务时,对预测请求体大小和预测时间有限制:
管理团队和团队成员 修改成员信息 团队中的成员,当其信息发生变化时,可以编辑其基本情况。 在“团队详情”区域,选择需修改的成员。 在成员所在行的“操作”列,单击“修改”。在弹出的对话框中,修改其“描述”或“角色”。 成员的“邮箱”无法修改,如果需要修改邮箱地址,建议先删除此成员,然后再基于新的邮箱地址添加新成员。
部署图像分类服务 模型部署 模型部署操作即将模型部署为在线服务,并且提供在线的测试UI与监控能力。完成模型训练后,可选择准确率理想且训练状态为“运行成功”的版本部署上线。具体操作步骤如下。 在“运行节点”页面中,待服务部署节点的状态变为“等待输入”时,双击“服务部署”进入配置详情页,完成资源的参数配置操作。
否 String 根据样本名称搜索(含后缀名)。 sample_time 否 String 样本加入到数据集时,会根据样本在OBS上的最后修改时间(精确到天)建立索引,此处可以根据此时间进行搜索。可选值如下: month:搜索往前30天至今天内添加的样本 day:搜索昨天(往前1天)至今天内添加的样本