检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
日志提示Compile graph failed 问题现象 日志提示:Compile graph failed。 图1 报错提示 原因分析 模型转换时未指定Ascend后端。 处理方法 需要在模型转换阶段指定“--device=Ascend”。 父主题: 常见问题
案 支持图片分类、物体检测、预测分析、声音分类场景 自动执行模型开发、训练、调优和推理机器学习的端到端过程 根据最终部署环境和开发者需求的推理速度,自动调优并生成满足要求的模型 ModelArts自动学习,为资深级用户提供模板化开发能力 提供“自动学习白盒化”能力,开放模型参数、
动的人脸说话视频生成模型。主要应用于数字人场景。不仅可以基于静态图像来输出与目标语音匹配的唇形同步视频,还可以直接将动态的视频进行唇形转换,输出与输入语音匹配的视频,俗称“对口型”。该技术的主要作用就是在将音频与图片、音频与视频进行合成时,口型能够自然。 方案概览 本方案介绍了在
dataset_name 是 String 数据集名称。 dataset_type 否 Integer 数据集类型。可选值如下: 0:图像分类 1:物体检测 3: 图像分割 100:文本分类 101:命名实体 102:文本三元组 200:声音分类 201:语音内容 202:语音分割 400:表格数据集
数据标注:提供在线标注能力,包含图像分类、目标检测、音频分割、文本三元组等标注场景;提供图片智能标注方案,提升标注效率;提供团队标注能力,支持多人协同标注与标注任务的审核验收 数据处理:提供数据清洗、数据校验、数据增强、数据选择等分析处理能力 图1 数据标注全流程 父主题: Standard功能介绍
针对不同类型的自动学习项目,训练作业对数据集的要求如下。 图像分类:用于训练的图片,至少有2种以上的分类(即2种以上的标签),每种分类的图片数不少于5张。 物体检测:用于训练的图片,至少有1种以上的分类(即1种以上的标签),每种分类的图片数不少于5张。 预测分析:由于预测分析任务的数据集
制作自定义镜像并用于训练(Pytorch+CPU/GPU) 本案例介绍如何从0开始制作镜像,并使用该镜像在ModelArts Standard平台上进行训练。镜像中使用的AI引擎是Pytorch,训练使用的资源是CPU或GPU。 面向熟悉代码编写和调测的AI工程师,同时熟悉docker容器知识
Hunyuan-DiT基于DevServer部署适配PyTorch NPU推理指导(6.3.909) 混元DiT,一个基于Diffusion transformer的文本到图像生成模型,此模型具有中英文细粒度理解能力。 方案概览 本方案介绍了在ModelArts Lite DevServer上使用昇腾计算资源Ascend
4:连续多张相似图片的预测结果不一致。 5:图像的分辨率与训练数据集的特征分布存在较大偏移。 6:图像的高宽比与训练数据集的特征分布存在较大偏移。 7:图像的亮度与训练数据集的特征分布存在较大偏移。 8:图像的饱和度与训练数据集的特征分布存在较大偏移。 9:图像的色彩丰富程度与训练数据集的特征分布存在较大偏移。
"/obs-gaia-test/data/image/image-classification/" annotation_config = dict() # 源数据的标注格式 annotation_config['scene'] = "image_classification" # 数据标注场景为图像分类标注
4:连续多张相似图片的预测结果不一致。 5:图像的分辨率与训练数据集的特征分布存在较大偏移。 6:图像的高宽比与训练数据集的特征分布存在较大偏移。 7:图像的亮度与训练数据集的特征分布存在较大偏移。 8:图像的饱和度与训练数据集的特征分布存在较大偏移。 9:图像的色彩丰富程度与训练数据集的特征分布存在较大偏移。
导和简单操作即可完成模型训练和部署。 当前自动学习支持快速创建图像分类、物体检测、预测分析、声音分类和文本分类模型的定制化开发。可广泛应用在工业、零售安防等领域。 图像分类:识别图片中物体的类别。 物体检测:识别出图片中每个物体的位置和类别。 预测分析:对结构化数据做出分类或数值预测。
导入数据 导出数据 发布数据集 修改数据集 管理版本 自动分组 数据特征 文件型 图像分类 支持 支持 支持 支持 支持 支持 支持 支持 物体检测 支持 支持 支持 支持 支持 支持 支持 支持 图像分割 支持 支持 支持 支持 支持 支持 支持 - 声音分类 支持 支持 - 支持
应用示例 创建图像分类数据集并进行标注任务 创建并完成图像分类的智能标注任务 开发环境的应用示例 以PyTorch框架创建训练作业(新版训练) 创建和修改工作空间 管理ModelArts服务的委托授权
数据集如何切分 在发布数据集时,仅“图像分类”、“物体检测”、“文本分类”和“声音分类”类型数据集支持进行数据切分功能。 一般默认不启用该功能。启用后,需设置对应的训练验证比例。 输入“训练集比例”,数值只能是0~1区间内的数。设置好“训练集比例”后,“验证集比例”自动填充。“训练集比例”加“验证集比例”等于1。
动的人脸说话视频生成模型。主要应用于数字人场景。不仅可以基于静态图像来输出与目标语音匹配的唇形同步视频,还可以直接将动态的视频进行唇形转换,输出与输入语音匹配的视频,俗称“对口型”。该技术的主要作用就是在将音频与图片、音频与视频进行合成时,口型能够自然。 Wav2Lip模型的输入
Object 数据源信息,详细请见表3。 width Long 图片长度。 height Long 图片高度。 depth Long 图片深度。 segmented String 分割。 mask_source String 图像分割得到的mask文件的云存储路径,目前只支持PNG格式。
不同类型的数据集支持的导入方式如表1所示。 表1 不同数据集支持的导入方式 数据集类型 OBS目录导入 Manifest文件导入 备注 图像分类 支持 支持 - 物体检测 支持 支持 - 图像分割 支持 支持 - 文本分类 支持 支持 - 命名实体 不支持 支持 - 文本三元组 不支持 支持 - 声音分类
MaaS大模型即服务平台功能介绍 对于普通企业来说,大模型开发不仅需要强大的算力,还需要学习训练、部署的相关参数配置和规格选择等专业知识。ModelArts Studio大模型即服务平台(后续简称为MaaS服务)作为一个面向客户的大模型服务化平台,提供简单易用的模型开发工具链,支
根据传入的trial_id,查询指定trial的搜索结果。 获取超参敏感度分析结果 获取超参敏感度分析结果的汇总表。 获取某个超参敏感度分析图像的路径 获取某个超参敏感度分析图像的保存路径。 提前终止自动化搜索作业的某个trial 提前终止自动化搜索作业的某个trial。 获取自动化搜索作业yaml模板的信息