检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
检查用于标注的图片数据,确保您的图片数据中,不存在RGBA四通道图片。如果存在四通道图片,智能标注任务将运行失败,因此,请从数据集中删除四通道图片后,再启动智能标注。 启动智能标注前要保证当前数据集不存在正在进行中的智能标注任务。 操作步骤 调用认证鉴权接口获取用户的Token。 请求消息体:
创建图像分类数据集并进行标注任务 本节通过调用一系列API,以创建图像分类数据集并进行标注任务为例介绍ModelArts API的使用流程。 概述 创建数据集并进行标注的流程如下: 调用认证鉴权接口获取用户Token,在后续的请求中需要将Token放到请求消息头中作为认证。 调用
获取某个超参敏感度分析图像的路径 功能介绍 获取某个超参敏感度分析图像的保存路径。 调试 您可以在API Explorer中调试该接口,支持自动认证鉴权。API Explorer可以自动生成SDK代码示例,并提供SDK代码示例调试功能。 URI GET /v2/{project_
将下图识别为汽车的图片。 图1 图像分类 物体检测是计算机视觉中的经典问题之一,其任务是用框去标出图像中物体的位置,并给出物体的类别。通常在一张图包含多个物体的情况下,定制识别出每个物体的位置、数量、名称,适合图片中有多个主体的场景,针对下图检测出图片包含树和汽车。 图2 物体检测
这样的数据和算法生成的模型仅适用于教学模式,并不能应对复杂的预测场景。即生成的模型对预测图片有一定范围和要求,预测图片必须和训练集中的图片相似(黑底白字)才可能预测准确。 图8 示例图片 图9 预测结果展示 Step7 清除资源 如果不再需要使用此模型及在线服务,建议清除相关资源,避免产生不必要的费用。
物体检测或图像分类项目支持对哪些格式的图片进行标注和训练? 图片格式支持JPG、JPEG、PNG、BMP。 父主题: 准备数据
单击“创建项目”,图像分类项目创建成功后页面自动跳转到“自动学习工作流”。 图像分类项目的工作流,将依次运行如下节点: 数据标注:对您的数据标注情况进行确认。 数据集版本发布:将已完成标注的数据进行版本发布。 数据校验:对您的数据集的数据进行校验,是否存在数据异常。 图像分类:将发布
行云端调试。 设置断点后单击“调试”,可实现代码逐步调试,查看中间变量值。 图9 “调试”按钮 图10 通过设置断点实现代码调试 可单击“运行”按钮,通过日志观察是否能正常训练。 图11 “运行”按钮 图12 训练日志 步骤3:使用ModelArts Notebook进行开发调试
击“预测”页签,进行服务测试。 图1 服务测试 下面的测试,是您在自动学习图像分类项目页面将模型部署上线之后进行服务测试的操作步骤。 模型部署完成后,“在服务部署”节点,单击“实例详情”按钮,进入服务预测界面,在“预测”页签单击“上传”,选择本地图片进行测试。 单击“预测”进行测
标注图像分类数据 由于模型训练过程需要大量有标签的图片数据,因此在模型训练之前需对没有标签的图片添加标签。通过ModelArts您可对图片进行一键式批量添加标签,快速完成对图片的标注操作,也可以对已标注图片修改或删除标签进行重新标注。 请确保数据集中已标注的图片不低于100张,否
训练图像分类模型 完成图片标注后,可进行模型的训练。模型训练的目的是得到满足需求的图像分类模型。请参考前提条件确保已标注的图片符合要求,否则数据集校验将会不通过。 前提条件 请确保您的数据集中的已标注的图片不低于100张。 请确保您的数据集中至少存在2种以上的图片分类,且每种分类的图片不少于5张。
ta-cat”。 如需要提前上传待标注的图片,请创建一个空文件夹,然后将图片文件保存在该文件夹下,图片的目录结构如:“/bucketName/data-cat/cat.jpg”。 如您将已标注好的图片上传至OBS桶,请按照如下规范上传。 图像分类数据集要求将标注对象和标注文件存储
print("Default image_organization:", image_organization) image_name = "mindspore-image-models-image" #@param {type:"string"} image_tag = "1.0.0"
使用自动学习实现图像分类 准备图像分类数据 创建图像分类项目 标注图像分类数据 训练图像分类模型 部署图像分类服务 父主题: 使用自动学习实现零代码AI开发
是否支持图像分割任务的训练? 支持。您可以使用以下三种方式实现图像分割任务的训练。 您可以在AI Gallery订阅相关图像分割任务算法,并使用订阅算法完成训练。 如果您在本地使用ModelArts支持的常用框架完成了训练脚本,可以使用自定义脚本创建训练作业。 如果您在本地开发的
AI开发的基本流程通常可以归纳为几个步骤:确定目的、准备数据、训练模型、评估模型、部署模型。 图1 AI开发流程 确定目的 在开始AI开发之前,必须明确要分析什么?要解决什么问题?商业目的是什么?基于商业的理解,整理AI开发框架和思路。例如,图像分类、物体检测等等。不同的项目对数据的要求,使用的AI开发手段也是不一样的。
创建图像分类自动学习项目并完成图片标注,训练按钮显示灰色,无法开始训练? 图像分类项目,图片标注至少需要两个类别,且每个类别至少5张图片,才可以开始自动训练。 父主题: 模型训练
这样的数据和算法生成的模型仅适用于教学模式,并不能应对复杂的预测场景。即生成的模型对预测图片有一定范围和要求,预测图片必须和训练集中的图片相似(黑底白字)才可能预测准确。 图8 示例图片 图9 预测结果展示 Step7 清除资源 如果不再需要使用此模型及在线服务,建议清除相关资源,避免产生不必要的费用。
期AI工作流。 图说ModelArts 图说ModelArts 立即使用 成长地图 由浅入深,带您玩转ModelArts 01 了解 了解华为云ModelArts的产品架构、功能和基础知识,有助于您更准确地匹配实际业务,让AI开发变得更简单、更方便。 产品介绍 什么是ModelArts
在服务详情页,单击选择“预测”页签。 图4 上传预测图片 单击“上传”,选择一张需要预测的图片,单击“预测”,即可在右边的预测结果显示区查看您的预测结果。 图5 预测样例图 图6 查看预测结果 本案例中数据和算法生成的模型仅适用于教学模式,并不能应对复杂的预测场景。即生成的模型对预测图片有一定范围和要