检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
o) 0.067 热身比例(warmup) 0.01 评估和优化模型 模型评估: 您可以从平台的训练日志中获取到每一步的Loss,并绘制成Loss曲线。本场景的一个Loss曲线示例如下: 图1 Loss曲线 通过观察,该Loss曲线随着迭代步数的增加呈下降趋势直至稳定,证明整个训
输出指示:指定输出的类型或格式。 提示词所需的格式取决于您想要语言模型完成的任务类型,以上要素并非都是必须的。 提示词工程使用流程 盘古大模型套件平台可以辅助用户进行提示词设计、调优、比较和对提示词通用性进行自动评估等功能,并对调优得到的提示词进行保存和管理。 表1 功能说明 功能 说明
部署边缘模型 进入盘古大模型套件平台,进入“模型开发 > 模型部署 > 边缘部署”,单击右上角“部署”按钮。 在创建部署页面选择模型与部署资产,选择部署方式为边缘部署,输入推理实例数(根据边缘资源池的实际资源选择),输入服务名称,单击“立即创建”。 创建成功后,可在“模型部署 >
估模型训练效果: Loss曲线:通过Loss曲线的变化趋势来评估训练效果,确认训练过程是否出现了过拟合或欠拟合等异常情况。 模型评估:使用平台的“模型评估”功能,“模型评估”将对您之前上传的测试集进行评估。通过查看测试集样本的PPL、BLEU和ROUGE等指标,进行横向(相同训练
模型的基础信息 盘古大模型平台为用户提供了多种规格的模型,涵盖从基模型到功能模型的多种选择,以满足不同场景和需求。不同模型在处理上下文token长度和功能上有所差异,以下是当前支持的模型清单,您可以根据实际需求选择最合适的模型进行开发和应用。 表1 NLP大模型清单 模型类别 模型
模型训练所需数据量与数据格式要求 盘古大模型套件平台支持NLP大模型的训练。不同模型训练所需的数据量和数据格式有所差异,请基于数据要求提前准备训练数据。 数据量要求 自监督训练 在单次训练任务中,一个自监督训练数据集内,上传的数据文件数量不得超过1000个,单文件大小不得超过1G
数据能够提升模型对任务的理解,而多样化的数据则帮助模型更好地应对各种情况。因此,数据的收集和处理是大模型训练中的关键环节。 盘古大模型套件平台通过提供数据获取、清洗、配比与管理等功能,确保构建高质量的训练数据。 父主题: 准备盘古大模型训练数据集
拥有用户OBS桶只读权限。 盘古用户角色 盘古大模型的用户可被赋予不同的角色,对平台资源进行精细化的控制。 表2 盘古用户角色 角色 说明 系统管理员 购买平台的用户默认为系统管理员,具有所有操作的权限。 运营人员 具备总览、平台管理(资产管理、权限管理)功能的权限。 模型开发人员 具备总览、服
特定领域的性能。 创建一个训练数据集 登录盘古大模型套件平台。 在左侧导航栏中选择“数据工程 > 数据管理”,单击界面右上角“创建数据集”。 图1 数据管理 在创建数据集弹出框中选择“创建一个训练数据集”,单击“创建”。 图2 创建训练数据集 进入训练数据集页面后,需要进行训练配置、数据配置和基本配置。
应用场景 智能客服 在政企场景中,传统的智能客服系统常受限于语义泛化能力和意图理解能力,导致用户需求难以准确捕捉,频繁转接至人工客服。这不仅增加了企业的运营成本,也影响了用户体验。盘古大模型的引入为这一问题提供了有效解决方案。 盘古大模型通过将客户知识数据转换为向量并存储在向量数
您可根据任务难度和数据规模进行调整。一般来说,如果目标任务的难度较大或数据量级很小,可以使用较大的训练轮数,反之可以使用较小的训练轮数。 如果您没有专业的调优经验,可以优先使用平台提供的默认值,再结合训练过程中模型的收敛情况动态调整。 数据批量大小(batch_size) >=1 4/8 数据批量大小是指对数据集进行
k3s // k3s可执行文件 agent images k3s-airgap-images-[arm64|amd64].tar.gz //k3s离线镜像 hilens-agent