检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
训练启动脚本说明和参数配置 本代码包中集成了不同模型的训练脚本,并可通过不同模型中的训练脚本一键式运行。训练脚本可判断是否完成预处理后的数据和权重转换的模型。如果未完成,则执行脚本,自动完成数据预处理和权重转换的过程。 如果用户进行自定义数据集预处理以及权重转换,可通过编辑 1_preprocess_data
训练的数据集预处理说明 以 llama2-13b 举例,运行:0_pl_pretrain_13b.sh 训练脚本后,脚本检查是否已经完成数据集预处理的过程。 如果已完成数据集预处理,则直接执行预训练任务。如果未进行数据集预处理,则会自动执行 scripts/llama2/1_preprocess_data
模型NPU卡数、梯度累积值取值表 不同模型推荐的训练参数和计算规格要求如表1所示。规格与节点数中的1*节点 & 4*Ascend表示单机4卡,以此类推。 表1 NPU卡数、加速框架、梯度配置取值表 模型 模型参数量 训练类型 序列长度cutoff_len 梯度累积值 优化工具(Deepspeed)
附录:基于vLLM不同模型推理支持最小卡数和最大序列说明 基于vLLM(v0.6.0)部署推理服务时,不同模型推理支持的最小昇腾卡数和对应卡数下的max-model-len长度说明,如下面的表格所示。 以下值是在gpu-memory-utilization为0.9时测试得出,为服
模型NPU卡数、梯度累积值取值表 不同模型推荐的训练参数和计算规格要求如表1所示。规格与节点数中的1*节点 & 4*Ascend表示单机4卡,以此类推。 表1 NPU卡数、加速框架、梯度配置取值表 模型 Template 模型参数量 训练策略类型 序列长度cutoff_len 梯度累积值
附录:基于vLLM不同模型推理支持最小卡数和最大序列说明 基于vLLM(v0.6.3)部署推理服务时,不同模型推理支持的最小昇腾卡数和对应卡数下的max-model-len长度说明,如下面的表格所示。 以下值是在gpu-memory-utilization为0.9时测试得出,为服
操作完成后再次执行搜索,若显示如下则网络正常,请回到ModelArts控制台界面再次单击界面上的“VS Code接入”按钮。 方法二:出现如下图报错,是由于VS Code版本过低,建议升级VS Code版本为1.57.1或者最新版。 原因分析二 本地系统为Linux,由于使用root用户安装VS
在ModelArts控制台界面上单击VS Code接入并在新界面单击打开,未弹出VS Code窗口 原因分析 未安装VS Code或者安装版本过低。 解决方法 下载并安装VS Code(Windows用户请单击“Win”,其他用户请单击“其他”下载),安装完成后单击“刷新”完成连接。
附录:基于vLLM不同模型推理支持最小卡数和最大序列说明 基于vLLM(v0.5.0)部署推理服务时,不同模型推理支持的最小昇腾卡数和对应卡数下的max-model-len长度说明,如下面的表格所示。 以下值是在gpu-memory-utilization为0.9时测试得出,为服
Huggingface缓存目录空间不足,出现OSError: [Errno 122] Disk quota exceeded 问题现象 报错提示OSError: [Errno 122] Disk quota exceeded。 原因分析 默认情况下,下载数据集缓存目录为“~/.c
附录:基于vLLM不同模型推理支持最小卡数和最大序列说明 基于vLLM(v0.6.0)部署推理服务时,不同模型推理支持的最小昇腾卡数和对应卡数下的max-model-len长度说明,如下面的表格所示。 以下值是在gpu-memory-utilization为0.9时测试得出,为服
附录:基于vLLM不同模型推理支持最小卡数和最大序列说明 基于vLLM(v0.6.0)部署推理服务时,不同模型推理支持的最小昇腾卡数和对应卡数下的max-model-len长度说明,如下面的表格所示。 以下值是在gpu-memory-utilization为0.9时测试得出,为服
调用transformers出现ImportError: libcblas.so.3: cannot open shared object file: No such file or directory 问题现象 调用transformers出现“ImportError: libcblas
操作完成后再次执行搜索,若显示如下则网络正常,请回到ModelArts控制台界面再次单击界面上的“VS Code接入”按钮。 方法二:出现如下图报错,是由于VS Code版本过低,建议升级VS Code版本为1.57.1或者最新版。 原因分析二 本地系统为Linux,由于使用root用户安装VS
多节点训练TensorFlow框架ps节点作为server会一直挂着,ModelArts是怎么判定训练任务结束?如何知道是哪个节点是worker呢? TensorFlow框架分布式训练的情况下,会启动ps与worker任务组,worker任务组为关键任务组,会以worker任务组的进程退出码,判断训练作业是否结束。
连接远端开发环境时,一直处于"ModelArts Remote Connect: Connecting to instance xxx..."超过10分钟以上,如何解决? 问题现象 解决方法 单击“Canel”,并回到ModelArts控制台界面再次单击界面上的“VS Code接入”按钮。
deepspeed多卡训练报错TypeError: deepspeed_init() got an unexpected keyword argument 'resume_from_checkpoint' 问题现象 deepspeed多卡训练报错TypeError: deepspeed_init()
#commit_id是Vscode版本的commit编号 ll 如果出现如图2,则表示远端已上传,则执行2。 反之,如果显示0KB,则表示远端未上传。请参考Notebook如何离线安装VS Code Server离线下载VS Code插件后,再执行2。 图2 远端已上传 关闭VS Code所有窗口,回到M
使用样例的有标签的数据或者自己通过其他方式打好标签的数据放到OBS桶里,在modelarts中同步数据源以后看不到已标注,全部显示为未标注 OBS桶设置了自动加密会导致此问题,需要新建OBS桶重新上传数据,或者取消桶加密后,重新上传数据。 父主题: Standard数据管理
_NPUDeviceProperties' object has no attribute 'multi_processor_count'”。 图1 报错信息 原因分析 这是因为torch_npu当前不支持DataParallel(DP)并行模式。 处理方法 如果是运行单卡模式,在训练脚本中加入export