检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
促使我们从小数目样本中获得梯度的统计估计的动机是训练集的冗余。在最坏的情况下,训练集中所有的 m 个样本都是彼此相同的拷贝。基于采样的梯度估计可以使用单个样本计算出正确的梯度,而比原来的做法少花了 m 倍时间。实践中,我们不太可能真的遇到这种最坏情况,但我们可能会发现大量样本都对
经网络,但是如果这类无鞍算法能够扩展的话,还是很有希望的。除了极小值和鞍点,还存在其他梯度为零的点。例如从优化的角度看与鞍点很相似的极大值,很多算法不会被吸引到极大值,除了未经修改的牛顿法。和极小值一样,许多种类的随机函数的极大值在高维空间中也是指数级稀少。
参数添加约束或惩罚时,一直是相对于固定的区域或点。例如,L2正则化(或权重衰减)对参数偏离零的固定值进行惩罚。然而,有时我们可能需要其他的方式来表达我们对模型参数适当值的先验知识。有时候,我们可能无法准确地知道应该使用什么样的参数,但我们根据领域和模型结构方面的知识得知模型参数之
神经网络模型建立好了之后,必然要进行模型的评估来了解神经网络的表现。 神经网络的因变量通常有两种数据类型,定量数据和定性数据。不同因变量数据类型对应的模型误差的定义也不一样。当因变量为定性数据时,模型误差可以进一步分为两个类型: 假阳性率, FPR False Positive Rate
L2惩罚法也是一个经典的正则化方法。 它是在原有损失函数的基础上,在构造一个新的损失函数。(带有惩罚项 是一个超参数)模型集成(model ensemble)可以提供模型的预测准确度,思想就是, 先训练大量结构不同的模型,通过平均、或投票方式综合所有模型的结构,得到最终预测。在实际中,有较大限制,原因很简单,
28/6/1659794617251380299.png) logistic模型找到的这条线,预测都正确。 但是,如果不是这么“完美”的分布呢,比如这样的第2组数据,就不是一条线能泾渭分明的分开的: ```python #构造第2组数据 def createDataSet_2():
Propagation FP)算法指输入值通过神经网络得到输出值的方法。正向传播算法的计算图如下:$sigma$表示sigmoid函数,也就是激活函数。包含损失函数的计算图如下:得到$l_2$,通过$l$计算损失函数L,其中$l$表示求解损失函数的运算。
下面用之前的广告数据,来建立线性回归模型,看看tensorflow2的一般建模过程。import numpy as np #1. 数据预处理:装载广告数据 def loadDataSet(): x=[];y=[] f=open('./Ad.csv')
keras.models.Sequential()构建模型使用 model.compile() 设置优化方法、损失函数、评价指标 (损失函数的值即 训练误差;评价指标的值即 测试误差)使用 model.fit() 带入训练数据,训练模型import tensorflow as tf
目录 先来看机器学习: 什么是特征? 深度学习是表示学习的经典代表: 深度学习的过程: 深度学习与传统机器学习差别: 深度学习代表算法: 先来看机器学习: 机器学习是利用经验experience来改善 计算机系统自身的性能,通过经验获取知识knowledge。 以往都是人们向
在有限区间中均匀分布。许多先验偏好于“更简单” 的解决方法(如小幅度的系数,或是接近常数的函数)。 贝叶斯估计通常使用的情况下,先验开始是相对均匀的分布或高熵的高斯分布,观测数据通常会使后验的熵下降,并集中在参数的几个可能性很高的值。
曲线下面的面积,通常来说一个越好的分类器,AP值越高。 mAP是多个类别AP的平均值。这个mean的意思是对每个类的AP再求平均,得到的就是mAP的值,mAP的大小一定在[0,1]区间,越大越好。该指标是目标检测算法中最重要的一个。 在正样本非常少的情况下,PR表现的效果会更好。 5、
和粘性阻力呢?部分原因是因为 −v(t) 在数学上的便利——速度的整数幂很容易处理。然而,其他物理系统具有基于速度的其他整数幂的其他类型的阻力。例如,颗粒通过空气时会受到正比于速度平方的湍流阻力,而颗粒沿着地面移动时会受到恒定大小的摩擦力。这些选择都不合适。湍流阻力,正比于速度的平方,在速度很小时会很弱。
数据集分成固定的训练集和固定的测试集后,若测试集的误差很小,这将是有问题的。一个小规模的测试集意味着平均测试误差估计的统计不确定性,使得很难判断算法 A 是否比算法 B 在给定的任务上做得更好。当数据集有十万计或者更多的样本时,这不会是一个严重的问题。当数据集太小时,也有替代方法
将数据集分成固定的训练集和固定的测试集后,若测试集的误差很小,这将是有问题的。一个小规模的测试集意味着平均测试误差估计的统计不确定性,使得很难判断算法 A 是否比算法 B 在给定的任务上做得更好。 当数据集有十万计或者更多的样本时,这不会是一个严重的问题。当数据集太
83526687508822.png) 矩阵的基本运算就是加减乘除。加减法如果这两个矩阵的维度是一样的,就非常好理解。矩阵也可以和行向量进行加减,要求行向量的列数和矩阵的列数是一样的。 矩阵的乘法,如果两个矩阵的维度一样,也非常好理解,这种叫做`逐点相乘`(element-wise
为了更精确地描述反向传播算法,使用更精确的计算图(computational graph)语言是很有帮助的。将计算形式化为图形的方法有很多。这里,我们使用图中的每一个节点来表示一个变量。变量可以是标量、向量、矩阵、张量、或者甚至是另一类型的变量。为了形式化我们的图形,我们还需引入操作(ope
在学习AI之前,就非常好奇深度学习模型怎么就能学习到知识呢?好神奇啊,感觉它跟人一样,给它素材就能学好在学习了一段时间的AI理论基础之后,发现深度学习模型的学习跟人是不一样的,一句话来说,深度学习就是拟合数据的过程,给定数据、标签和损失函数(有时也称目标函数),然后根据损失值lo
Sigmoid 函数的图像看起来像一个 S 形曲线。
深度学习是人工神经网络的最新分支,它受益于当代硬件的快速发展。众多研究者目前的方向主要集中于构建更大、更复杂的神经网络,目前有许多方法正在聚焦半监督学习问题,其中用于训练的大数据集只包含很少的标记。举例:深玻耳兹曼机(Deep Boltzmann Machine,DBM)Deep