检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
权重比例推断规则在其他设定下也是精确的,包括条件正态输出的回归网络以及那些隐藏层不包含非线性的深度网络。然而,权重比例推断规则对具有非线性的深度模型仅仅是一个近似。虽然这个近似尚未有理论上的分析,但在实践中往往效果很好。Goodfellow et al. (2013b) 实验发现
V2)并结合不同的特征提取器(Resnet V1 50, Resnet V1 101, Inception V2, Inception Resnet V2, Mobilenet V1和Darknet-19)的最新进展。我们的目的是通过迁移学习的方法来探讨这些对象检测模型的特性,这些模
入探讨迁移学习的基本概念、方法以及实际应用。 什么是迁移学习? 迁移学习是一种通过转移已学知识来解决新问题的学习方法。传统的深度学习模型通常从零开始训练,需要大量标注数据来学习数据的特征。然而,在许多实际应用中,我们往往面临以下挑战: 数据稀缺:在许多任务中,获得大量标注数据可能非常昂贵或耗时。
深度神经网络设计中的一个重要方面是代价函数的选择。幸运的是,神经网络的代价函数或多或少是和其他的参数模型例如线性模型的代价函数相同的。 在大多数情况下,我们的参数模型定义了一个分布 p(y | x; θ) 并且我们简单地使用最大似然原理。这意味着我们使
y),其中 x 是一组变量,我们需要它们的导数,而 y 是函数的另外一组输入变量,但我们并不需要它们的导数。在学习算法中,我们最常需要的梯度是代价函数关于参数的梯度,即 ∇θJ(θ)。许多机器学习任务需要计算其他导数,来作为学习过程的一部分,或者用来分析学得的模型。反向传播算法也适用于这些
准备自行准备一个玫瑰花朵数据集,尽量多的种类和数量,下面教程已自备数据集。数据预处理将图片转换为模型可以处理的格式,对数据进行归一化处理。import tensorflow as tf from tensorflow.keras.preprocessing.image import
theory)可知,对于任意的非线性函数一定可以找到一个深度学习网络来对其进行表示,但是“可表示”并不代表“可学习”,因此需要进一步了解深度学习的样本复杂度,即需要多少训练样本才能得到一个足够好的深度学习模型。这些问题都有待于从理论层面进行突破,统计学对深度学习的进一步发展有着十分重要的意义。
目标检测任务,就是要让计算机不仅能够识别出输入图像中的目标物体,还能够给出目标物体在图像中的位置。在深度学习正式成为计算机视觉领域的主题之前,传统的手工特征图像算法一直是目标检测的主要方法。在早期计算资源不充足的背景下,研究人员的图像特征表达方法有限,只能尽可能地设计更加多元化的检测算法进行弥补,包括早期的尺度不变特征
差较大的现象。欠拟合与过拟合的区别:欠拟合在训练集和测试集上的性能都较差,而过拟合往往能较好地学习训练集数据的性质,而在测试集上的性能较差。在神经网络训练的过程中,欠拟合主要表现为输出结果的高偏差,而过拟合主要表现为输出结果的高方差。机器学习的目标:是使学得的模型能够很好的适用于
深度学习1.0已经成功地解决了人们可以在直观上(通常以快速无意识、非语言的方式)解决的任务,比方说,直觉感觉到游戏中采取一种特定的行动是好的,或者感知到一张图片中有一只狗,这些我们可以在不到一秒钟的时间内快速完成任务以及我们惯常解决的任务,都属于此类。DL 1.0 模型在
常见的语义分割算法属于有监督学习,因此标注好的数据集必不可少。公开的语义分割数据集有很多,目前学术界主要有三个benchmark(数据集)用于模型训练和测试。第一个常用的数据集是Pascal VOC系列。这个系列中目前较流行的是VOC2012,Pascal Context等类似的
不仅仅是一个深度学习项目。它是一个 以实现人工智能民主化为使命的社区。它是 构建深度学习系统的蓝图和指南的集合,以及针对黑客的 DL 系统的有趣见解。 MXNet - 具有动态、变异感知数据流调度器的轻量级、便携、灵活的分布式/移动深度学习 Gluon -
构数据的分析。大多数GNN方法对于图结构的质量非常敏感,通常需要完美的图结构才能学习到信息量较大的嵌入。然而,图中普遍存在的噪声使我们需要为真实世界中的问题获取鲁棒的表征。为了提高GNN模型的鲁棒性,研究人员围绕图结构学习(GSL)这一中心概念展开了许多研究,旨在同时学习优化后的
是通过正向强化来学习的,即赫布理论 [2]。赫布理论是感知机学习算法的原型,并成为支撑今日深度学习的随机梯度下降算法的基石:强化合意的行为、惩罚不合意的行为,最终获得优良的神经网络参数。 来源于生物学的灵感是神经网络名字的由来。这类研究者可以追溯到一个多世纪前的亚历山大·贝恩(1
FCN的网络结构:网络结构详细图:FCN与CNN的区别:CNN网络:在卷积层之后会接上若干个全连接层, 将卷积层产生的特征图(feature map)映射成一个固定长度的特征向量。FNN网络:把cnn最后的全连接层转换成卷积层,输出一种输出的是一张已经Label好的图片(语义分割
式的定义之外,用类比的方法讲的非常的简单易懂 有监督学习,无监督学习,半监督学习,强化学习。强化学习说的非常厉害,适用于下棋和游戏这一类领域,基本逻辑是正确就奖励,错误就惩罚来做一个学习。 那么无监督学习的典型应用模式是什么呢?说出来之后你就会觉得无监督学习没有那么神秘了,那就
深度学习在校园安全的应用大致可分为:1.人脸识别在门禁、出勤、楼梯密集人群检测等情况的应用2.图像识别在楼顶、围墙、偏僻角落、废弃建筑物等关键区域设立“虚拟界限”3. 人体姿态识别在校园异常行为的应用(如摔倒、拥挤、推搡等)4.表情识别和姿态识别等在校园暴力、校园欺凌的应用目前人